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Abstract

• Firewalls are vital to security policy enforcement

• However, they introduce significant delay to a system

• What will happen in the next generation of networks?

• This presentation will introduce a novel parallel firewall system

• Objects:

– Maintain Quality of Service

– Mitigate Denial of Service

– Provide High Scalability
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Modern Security Issues

• Connections to the Internet can leave a network vulnerable

• Conventionally a firewall is utilized like a router, between a group

of networks

• Not just a routing table, they enforce an ordered set of rules

• Called a security policy, or ACL

• Knowledge of previous decisions is state
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Example Policy Representations

• Best match vs Last match vs First match

• Tree/Graph methods show that input style may vary from actual

implementation

1 Deny all traffic

2 Allow traffic from host x with any service

3 Deny traffic from any host with service y

Figure 1: Example Psuedo-policy with “all traffic” rule at top
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Example Policy Representations

• Best match vs Last match vs First match

• Tree/Graph methods show that input style may vary from actual

implementation

1 Deny all traffic

2 Allow traffic from host x with any service

3 Deny traffic from any host with service y

Figure 2: Example Psuedo-policy with “all traffic” rule at top
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Example Policy Representations

• Best-match vs Last-match vs First-match

• Tree/Graph methods show that input style may vary from actual

implementation

1 Allow traffic from host x with any service

2 Deny traffic from any host with service y

3 Deny all traffic

Figure 3: Example Psuedo-policy with “all traffic” rule at bottom
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ESnet and UltraNet

• DOE network to support climate analysis and simulation

– Facilities are located across the United States

• Network consists of leased fiber (OC 192) and Gigabit Ethernet

– Maximum data rate is 5 Gbps
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Washington,
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• Several important security issues are present
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Allowing for High Speed Networks

• Security policy enforcement imposes significantly higher processing

loads than routing

• This will only increase as networking technology advances

• Several solutions for improving firewall performance

1. Optimize algorithms

2. Optimize rules

3. Parallelize system

• Rule optimization is an area of future research (Matt Lane)

• Improvements for a single firewall can be made, but are a

temporary solution

Ryan J. Farley Dec 2005



Wake Forestp pComputer Science + DOE MICS Parallel Firewall Designs for High-Speed Networks 9

A Candidate for Parallelization

• Firewalls are a candidate for parallelism

• Two types:

1. Data parallel (DP) – divides data processed

2. Function parallel (FP) – divides work of processing data

• Data parallel

– Scalable to load

– Fails to reduce policy processing time

• Function parallel

– Reduces policy processing time

– Allows higher performance capabilities
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What I Will Cover Today

• Background Material (Policy Concepts)

• Current Approaches

• Function Parallel Design

– With Gate

– With no Gate

• Theoretical Layout

• Simulation Results

• How to DIY
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Firewall Modeling Concepts

• A rule is an ordered tuple and an associated action

r = (r[1], r[2], . . . , r[k])

• Any tuple of a rule can be fully specified or contain wildcards ‘*’

• A packet is the same but has neither ranges nor an action

d = (d[1], d[2], . . . , d[k])

• Definition Packet d matches ri if

d ⇒ ri iff d[l] ⊆ ri[l], l = 1, . . . , k
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Policy Models

• A firewall enforces a policy

Definition A policy R is an ordered list of n rules {r1, r2, . . . , rn}
• From this point on, assume first match model

Source Destination

No. Proto. IP Port IP Port Action

1 UDP 1.1.* * * 80 deny

2 TCP 2.* * 1.* 90 accept

3 UDP * * 1.* * accept

4 TCP 2.* * 1.* 20 accept

5 UDP 1.* * * * accept

6 * * * * * deny
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Accept Sets

• A policy default is executed when all other rules fail to match

• To reduce the policy size use a default rule:

– Default ‘deny’

– Default ‘accept’

• An accept set A is the set of all possible unique packets which a

policy will accept

• A deny set D is the set of all possible unique packets which a

policy will deny

Definition A comprehensive policy R is one where D̄ = A

Definition R and R′ are equivalent if A = A′

Definition If R′ is a modified R then integrity is maintained
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Modeling Precedence

• Precedence modeled as a Directed Acyclical Graph (DAG)

– Vertices are rules, edges are precedence relationships

– Edge exists between ri and rj , if i < j and the rules intersect

– Rules intersect if their every tuple of their set intersection is

non-empty

Definition The intersection of rule ri and rj , (ri ∩ rj)

ri ∩ rj = (ri[l] ∩ rj [l]), l = 1, . . . , k

r1 r2 r1 r2

r1 ∩ r2• Intersection describes the set of packets that match both rules

• If two rules intersect, then the order is significant
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Precedence Relationships

Source Destination
No. Proto. IP Port IP Port Action

1 UDP 1.1.* * * 80 deny

2 TCP 2.* * 1.* 90 accept

3 UDP * * 1.* * accept

4 TCP 2.* * 1.* 20 accept

5 UDP 1.* * * * accept

6 * * * * * deny

r1 r2 r3 r4 r5 r6
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Discussion on Current Firewall Approaches

• Software Firewalls

– User space vs Kernel space

– NetFilter, SunScreen, IPFilter

– Good development platform

• Hardware Firewalls

– Edgeware Net Appliances

– Cisco, Check Point

– Closer to line speed

– Dedicated logic, most use niche market devices

∗ NPU – Network Processing Unit

∗ ASIC – Application Specific Integrated Circuit

∗ FPGA – Field Programmable Gate Array
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Discussion on Current Firewall Approaches

• Ultimately Software approaches are bound to the limits of the OS:

– Resource competitive environment

• Both solutions are limited by the hardware used

• Common solution is to buy bigger and faster machine

– Non-modular

– Not economically ideal

• Single points of entry can easily become overwhelmed in surges of

traffic

– Denial of Service

• Therefore there is a need for a scalable solution
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Current Parallel Firewall Architectures

• An array of firewalls consists of m firewall nodes

• Each firewall node has a local policy to enforce

• Definition A system is data parallel (load-balancing) if:

– Distributes packets evenly to all firewall nodes

– Duplicates original policy to each firewall node (Ri = R)

packet
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Data Parallel, Overview

• Previously done by Benecke, then Jeff Shirley

• Packet distribution ensures no duplicates

• Maintains integrity since Ai = A

• Better throughput than traditional designs
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Data Parallel, The Bad

• Does not allow for Quality of Service or state

• Benefit is related to load, when enough traffic exists to split

• Does not directly focus on reducing processing delay

– Less transparent to users

• New parallel firewall architectures must solve these problems

– To meet future demands

– Increasing security threats
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Function Parallel with Gate

• Definition A system is function parallel (with gate) if:

– Duplicates packets to all firewall nodes

– Distributes local policy Ri to each firewall node, where⋃m
i=1 Ai = A

– A gate coordinates local policy results

packet
duplicator•

r1

r4

r2

r5

r3

r6

gate
control
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Function Parallel, Why Gate?

• In this variation (FPG), precedence edges exist between firewall

nodes

– No firewall node can make a decision independently

• Incoming packets are duplicated to all firewalls and the gate

– Multiple firewall nodes may find an accept match for the same

packet if Ai ∩ Aj , i �= j

– A gate node is needed to make a final decision

Ryan J. Farley Dec 2005
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FPG, How the Gate Works

• Firewall nodes do not execute the associated action

– Send decision as a vote to the gate

– Vote consists of at least the rule number and action

∗ No match is a valid response

∗ Matches in state would have uniformally lower values

• The gate caches the packet until a decision can be made

• First match method is accomplished by executing the action of the

vote with the lowest rule number

How is last match done?
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FPG, Integrity in Rule Distributions

• Local policies are distributed such that
⋃m

i=1 Ai = A

• Gate resolves which rule is the appropriate final match, preserving

rule precedence

• For example:

– Put every rule on at least one machine

– Never let the local policies contain shadowing

∗ Local rule order always increases
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FPG, Example Rule Distributions

• Vertical distribution

– Incrementally distribute rules

– First n%m firewall nodes have n/m + 1 rules, rest have n/m

r1 r4

r2 r5

r3 r6
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FPG, Example Rule Distributions

• Horizontal distribution

– Incrementally distribute rules

– Round robin

r1 r2

r3 r4

r5 r6
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FPG, Failure

• If one firewall node fails. . . system would fail

• Redundancy is important

• Duplicating the entire system is inhibitive

r1
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r4

r5

r6
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FPG, Redundancy

• Duplicate Rj by appending it to Ri where i < j, i.e. i = j − 1

• This requires an extra firewall node, so put append R1 onto Rm

• Now
⋃m

i=1 Ai = A is still true

• Gate still prevent duplicates

• Performance could be increased with dynamic insertions on failure
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FPG, Short-Circuit Evaluation

• Currently the system is as fast as the slowest firewall node in all

cases

• Information from the DAG could be used to reduce the required

votes

r1 r4

r2 r5

r3 r6
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FPG, Short-Circuit

• If the gate machine can tell the firewall nodes to stop processing a

packet:

– Firewall nodes to move on to the next packet

– Makes best time 1 rule and most cases less than worse case

∗ Policy Default

∗ Last rule on slowest machine

∗ A rule with precedence from another machine

∗ No precedence

– Speeds up the processing time

• If the higher hit ratios were earlier in the vote array then you

would really see performance increase
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FPG, Pipelining the Process

• If the array processes packets asynchronously, then it increases

work efficiency

• Would show performance benefits from short-circuit processing

– firewall node could preemptively empty packets from a queue

– implies firewall nodes track gate messages

• Throttle message might be necessary

• However, requires gate to track multiple packet decisions
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FPG, Summary

• This method has distinct advantages over traditional and data

parallel

– Quality of Service

– Stateful inspection

– Reduced processing delay

• Disadvantages:

– Is only limited by number of rules, which is generally not an

issue

– There is delay associated with the gate
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Function Parallel with no Gate Design

• If the firewall nodes could be designed to act independently then

the gate could be removed

• Definition A system is function parallel, and does not require a

gate if:

– Duplicates packets to all firewall nodes

– Distributes a local policy Ri to each firewall node, where⋃m
i=1 Ai = A and

⋂m
i=1 Ai = ∅

• Incoming packets are duplicated to all firewalls and the gate

– Since no accept sets intersect, only one firewall node will find

an accepting match
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FP, Integrity in Rule Distributions

• Local policies are distributed such that
⋃m

i=1 Ai = A and⋂m
i=1 Ai = ∅

• The last constraint guarantees no more than one firewall node will

accept the same packet

• For example:

– Put every rule on at least one machine

– Never let the local policy DAGs contain shadowing

– Divide the policy into non-intersecting local policies

• Consider the common case of a policy with no precedence edges

and default deny
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FP vs DP firewall, Theoretical Model

• Considered an open network of M/M/1 queues (Jackson Network)

– A queue represents a firewall node

• Can be used to calculate an average of completely independent

queues

• λ is the system arrival rate

• µ is processes per unit time, and 1
µ is the service time

• Standard formula for delay of a cascading system is

E(T ) =
q∑

i=1

1
µi − λi

• But both DP and FP have a single layer of concurrent queues
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FP vs DP firewall, Theoretical Model

• Let x equal the rules processed per unit time

• For data parallel each firewall node

– Arrival rate is λ
m

– Processing time is x
n

λ packet
distributor◦

λ
3 λ

3

λ
3

R R R

Ed(T ) =
1

x
n − λ

m
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FP vs DP firewall, Theoretical Model

• Let x equal the rules processed per unit time

• For function parallel each firewall node

– Arrival rate is λ

– Processing time is x
n
m

=m·x
n

λ packet
duplicator•

λ
λ

λ

R
3

R
3

R
3

Ef (T ) =
1

m·x
n − λ
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FP vs DP firewall, Theoretical Model

• Data parallel is then

Ed(T ) =
1

x
n − λ

m

• Function parallel is then

Ef (T ) =
1

m·x
n − λ

• The reduction tells us the theoretical relation of delay (FP has
1
m

th
the delay that DP firewall does):

Ef (T )
Ed(T )

=
1
m
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FP, Summary

• This process has the same advantages as function parallel with

gate

– Quality of Service

– Stateful inspection

– Reduced processing delay

– No additional gate delay

– Compatible with legacy firewall systems

• Shares one disadvantage with the function parallel with gate:

– Is only limited by number of rules, which is generally not an

issue
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Parallel Firewall Simulation Results

• To compare all designs simulations were used

• Assumptions

– Each firewall node could process 6 × 107 rules per second

– Inter-arrival rate scheduled on Poisson distribution

– Rule match probability according to Zipf distribution

– No additional delay for DP firewall packet distributor

– Costant gate delay for FPG

• Cases were ran to determine the performance of:

– Increasing arrival rates

– Increasing policy size

– Increasing number of nodes

Ryan J. Farley Dec 2005
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Delay vs Arrival Rate

• Parallel systems consisted of 5 firewall nodes

• Policy size was 1024 rules

• Arrival rate was varied from 300 Mbps up to 6 Gbps
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Delay vs Policy Size

• Parallel systems consisted of 5 firewall nodes

• Arrival rate was established at 650 Mbps

• Policy size was incremented from 2 to 2048
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Delay vs Number of Firewall nodes

• Arrival rate was established at 650 Mbps

• Policy size was 1024 rules

• Parallel systems varied number of firewall nodes from 2 to 256
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Summary of Simulations

• Illustrates advantage of parallelism

• Reducing processing time is more advantageous than reducing

arriving traffic load

• Removing the gate delay helps function parallel approach

theoretical rates
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How to Roll Your Own

• System can be divided into components

– Firewall nodes – Linux PC running iptables

– Packet Duplicator

∗ 10/100 Mbps use a hub

∗ Gigabit requires a tap (usually used for IDS)

– Control Plane

∗ Needed to contact firewall nodes for management

∗ Uses separate subnet for security
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How to Roll Your Own

• Combining components

– Firewall nodes

∗ Duplicate IPs and MACs in stealth mode

∗ One IP/MAC per incoming interface

∗ Enable promiscuous mode and disable ARPs

∗ Disable ICMP requests

∗ Consider enabling one firewall node to allow ARP and ping

• Network topology given on board

Ryan J. Farley Dec 2005



Wake Forestp pComputer Science + DOE MICS Parallel Firewall Designs for High-Speed Networks 47

Conclusions

• It is important that a firewall acts transparently to users

• Unfortunately, firewalls quickly become bottlenecks

• Particularly in High Speed Networks

• Improving implementations and hardware is not as scalable as

needed

• Enter Parallel firewalls

• Data parallel does not address processing delay

• Function parallel with gate is flexible, but has the added gate

delay

• Function parallel with no gate solves scalable processing delay

issues
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Great Wall Systems

• Recently founded through WFU OTAM

• Basis is two patents created through research from DOE grant

• Dedicated to High Speed Networking Devices

• Located at 111 Chestnut Street, Victoria Hall, Winston-Salem, NC
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That’s All. . .

• Thank you for your time
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