
NOTICE: This material is copyrighted, and I am required to inform you that its use is limited to permissions of the
copyright holder of each particular manuscript. Please refer to the following list, sorted chronologically, for further
information.

• Ryan J. Farley and Errin W. Fulp. Effects of Processing Delay on Function-Parallel Firewalls. IASTED: PDCN Febru-
ary 2006.

The authors have transfered copyright in the Paper, transferring to IASTED and ACTA PRESS the exclusive
right to publish, distribute, reproduce, or sell the Paper by printed, electronic or other means. the Paper
cannot be re-published, distributed or sold ther than by IASTED and ACTA PRESS without the prior written
permission of IASTED and ACTA PRESS. It is available for purchase at http://www.actapress.
com/Content_of_Proceeding.aspx?proceedingID=352

• Errin W. Fulp and Ryan J. Farley. A Function-Parallel Architecture for High-Speed Firewalls. IEEE: ICC June 2006.
c©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this mate-

rial for advertising or promotional purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from
the IEEE.

• Ruishan Zhang, Xinyuan Wang, Ryan Farley, Xiaohui Yang, and Xuxian Jiang. On the Feasibility of Launching the
Man-In-The-Middle Attacks on VoIP from Remote Attackers. ACM: ASIACCS March 2009.

Copyright c©2009 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital
or hard copies of portions of this work for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page in print or the first screen in digital media. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Send written requests for republication to ACM Publications, Copyright & Permissions
at the address above or fax +1 (212) 869-0481 or email permissions@acm.org.
For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923.

• Ruishan Zhang, Xinyuan Wang, Xiaohui Yang, Ryan Farley and Xuxian Jiang. An Empirical Investigation into the
Security of Phone Features in SIP-based VoIP Systems. ISPEC April 2009.

The copyright to the Contribution identied above is transferred to Springer-Verlag GmbH Berlin Heidelberg
(hereinafter called Springer-Verlag). The copyright transfer covers the sole right to print, publish, distribute
and sell throughout the world the said Contribution and parts thereof, including all revisions or versions
and future editions thereof and in any medium, such as in its electronic form (ofine, online), as well as to
translate, print, publish, distribute and sell the Contribution in any foreign languages and throughout the
world (for U.S. government employees: to the extent transferable). The published article is available on
Springers website www.springerlink.com.

• Ryan Farley and Xinyuan Wang. Roving Bugnet: Distributed Surveillance Threat and Mitigation. IFIP: SEC May
2009.

See the previous copyright statement (Springer-Verlag).

1



A Function-Parallel Architecture for
High-Speed Firewalls

Errin W. Fulp and Ryan J. Farley

Department of Computer Science

Wake Forest University, Winston-Salem, NC 27109-7311, USA

nsg.cs.wfu.edu

Abstract—Firewalls enforce a security policy by inspect-
ing and filtering traffic arriving or departing from a secure
network. This is typically done by comparing an arriving
packet to a set of rules and performing the matching rule
action, which is accept or deny. Unfortunately packet in-
spections can impose significant delays on traffic due to the
complexity and size of rule sets. Therefore, improving fire-
wall performance is important, given the next generation of
high-speed networks.

This paper introduces a new firewall architecture that can
perform packet inspections under increasing traffic loads,
higher traffic speeds, and strict QoS requirements. The
architecture consists of multiple firewalls configured in par-
allel that collectively enforce a security policy. Each fire-
wall implements part of the policy and arriving packets
are processed by all the firewalls simultaneously. Since
multiple machines are used to process every packet, the
proposed function-parallel system has lower delays (74%
lower) and a higher throughput than other data-parallel
(load-balancing) firewalls. These findings will be demon-
strated empirically. Furthermore unlike data-parallel sys-
tems, the function-parallel design allows the stateful inspec-
tion of packets, which are critical to prevent certain types
of network attacks.

I. Introduction

Network firewalls remain the forefront defense for most
computer systems. Guided by a security policy, these de-
vices provide access control, auditing, and traffic control
[2], [22], [23]. As seen in figure 1(a), a security policy is
a set of ordered rules that define the action to perform
on matching packets. Given the packet and/or connec-
tion information, rules indicate the action to take place for
each packet, such as discard, forward, or redirect. Security
can be further enhanced with connection state information.
For example a table can be used to record the state of each
connection, which is useful for preventing certain types of
attacks (e.g., TCP SYN flood) [23].

Traditional firewall implementations consist of a single
dedicated machine, similar to a router, that sequentially
applies the rule set to each arriving packet. However,
packet filtering can represent a significantly higher process-
ing load than routing decisions [16], [18], [23]. For example,
a firewall that interconnects two 100 Mbps networks would
have to process over 300,000 packets per second [22]. Suc-
cessfully handling this high traffic becomes more difficult
as rule sets become more complex [3], [15], [23]. Further-
more, firewalls must be capable of processing even more
packets as interface speeds increase. In a high-speed envi-

ronment (e.g. Gigabit Ethernet), a single firewall can easily
become a bottleneck and is susceptible to DoS attacks [3],
[5], [11], [13]. An attacker could simply inundate the fire-
wall with traffic, delaying or preventing legitimate packets
from being processed. Building a faster single firewall is
possible [6], [16], [18], [19], [21]; however, the benefits are
temporary (traffic loads and interface speeds are increas-
ing); it is not scalable; it is a single point of failure; and it
is generally not cost-effective for all installations.

A parallel firewall (also called a load-balancing firewall)
is a scalable approach for increasing the speed of inspecting
network traffic [3], [13], [15], [23]. As seen in figure 2(a),
the system consists of multiple identical firewalls connected
in parallel. Each machine, called a firewall-node, imple-
ments the complete security policy and arriving packets
are distributed across the nodes such that only one node
processes any given packet [3]. How the load-balancing
algorithm distributes packets is vital to the system and
typically implemented as a high-speed switch in commer-
cial products [12], [13]. Although parallel firewalls achieve
higher throughput than traditional firewalls [3] and have a
redundant design, the performance benefit is only evident
under high traffic loads. Furthermore, stateful inspection
requires all traffic from a certain connection or exchange
to traverse the same firewall-node, which is difficult to per-
form at high speeds [15].

This paper introduces a new scalable parallel firewall
architecture designed for increasing network speeds and
traffic loads. The design consists of multiple firewall nodes
where each firewall node implements a portion of the se-
curity policy. Unlike the previous parallel design, when a
packet arrives to the new architecture it is processed by
every firewall node in parallel, thus the processing time re-
quired per packet is reduced. Rule distribution across the
firewall nodes must be done to maintain policy integrity,
which ensures the parallel design and a traditional sin-
gle firewall always reach the same decision for any packet.
Rule distribution guidelines that maintain integrity are de-
scribed in this paper. Simulation results will show the
new architecture can achieve a 74% reduction in processing
time as compared to other parallel-firewall designs. Fur-
thermore unlike other designs, the proposed architecture
can provide stateful inspections since a packet is processed
by every firewall node. Therefore, the new parallel design

1



is a scalable solution that offers consistently better perfor-
mance and more capabilities than other designs.

The remainder of this paper is structured as follows.
Section II reviews firewall policy models that are used for
rule distribution in the proposed parallel system. Paral-
lel firewall designs are described in section III, including
the new design and rule distribution methods. Then sec-
tion IV will demonstrate the experimental performance of
the parallel design. Section V reviews the parallel firewall
design and discusses some open questions.

II. Firewall Policy Models

Since maintaining policy integrity is a primary objective
of any firewall design, this section will review firewall poli-
cies and describe a policy model that maintains this char-
acteristic [9]. A firewall policy is an ordered set of firewall
rules. In this paper, a rule r is modeled as an ordered tuple
of sets, r = (r[1], r[2], ..., r[k]). Order is necessary among
the tuples since comparing rules and packets requires the
comparison of corresponding tuples. Each tuple r[l] is a
set that can be fully specified, given as a range, or contain
wildcards ‘*’ in standard prefix format. For the Inter-
net, security rules are commonly represented as a 5-tuple
consisting of: protocol type, source IP address, source port
number, destination IP address, and destination port num-
ber [22], [23]. Given this model, the ordered tuples can be
supersets or subsets of each other, which forms the basis of
precedence relationships. In addition to the prefixes, each
filter rule has an action, which is to accept or deny. Sim-
ilar to a rule, a packet (IP datagram) d can be viewed as
an ordered k-tuple d = (d[1],d[2], ...,d[k]); however, ranges
and wildcards are not possible for any packet tuple.

Using the previous rule definition, a standard security
policy can be modeled as an ordered set (list) of n rules,
denoted as R = {r1, r2, ..., rn}. State can be viewed as a
preliminary extension of the policy that contains a set of
rules for established connections [22]. Note, the internal
representation of the policy does not have to be a list [10],
[16]. Starting with the first rule, a packet d is sequen-
tially compared against each rule ri until a match is found
(d ⇒ ri), then the associated action is performed. This
is referred to as a first-match policy and is used in the
majority of firewall systems including the Linux firewall
implementation iptables [17]. A match is found between
a packet and rule when every tuple of the packet is a subset
of the corresponding tuple in the rule.

Definition Packet d matches ri if

d ⇒ ri iff d[l] ⊆ ri[l], l = 1, ..., k

The rule list R is comprehensive if for every possible
legal packet d a match is found using R. Furthermore, two
rule lists R and R′ are equivalent if for every possible legal
packet d the same action is performed by the two rule lists.
If R and R′ are different (e.g. a reorder) yet the lists are
equivalent, then the policy integrity is maintained.

As previously mentioned, a rule list has an implied prece-
dence relationship where certain rules must appear before
others if the integrity of the policy is to be maintained. For
example consider the rule list in figure 1(a). Rule r1 must
appear before rule r4, likewise rule r5 must be the last rule
in the policy. If for example, rule r4 was moved to the
beginning of the policy, then it will shadow [1] the original
rule r1. Shadowing is an anomaly that occurs when a rule
rj matches a preceding rule ri, where i < j. As a result of
the relative order rj will never be utilized. However, there
is no precedence relationship between rules r1, r2, or r3

given in figure 1(a). Therefore, the relative order of these
three rules will not impact the policy integrity and can be
changed to improve firewall performance.

As described in [8], [9], the precedence relationship be-
tween rules in a policy can be modeled as a Policy Directed
Acyclical Graph (DAG). Let G = (R,E) be a policy DAG
for a rule list R, where vertices are rules and edges E are
the precedence relationships (constraint). A precedence re-
lationship, or edge, exists between rules ri and rj , if i < j
and the rules intersect [8].

Definition The intersection of rule ri and rj , denoted as
ri ∩ rj is

ri ∩ rj = (ri[l] ∩ rj [l]), l = 1, ..., k

Therefore, the intersection of two rules results in an or-
dered set of tuples that collectively describes the packets
that match both rules. The rules ri and rj intersect if every
tuple of the resulting operation is non-empty. In contrast,
the rules ri and rj do not intersect, if at least one tuple is
the empty set.

For example consider the rules given in figure 1(a), the
intersection of r1 and r4 yields (UDP, 1.1.*, *, *, 80).
Again, the rule actions are not considered in the inter-
section or match operations. Since these two rules inter-
sect, a packet can match both rules for example d = (UDP,
1.1.1.1, 80, 2.2.2.2, 80). The relative order must be
maintained between these two rules and an edge drawn
from r1 to r4 must be present in the DAG, as seen in fig-
ure 1(b). In contrast consider the intersection of rules r2

and r3 in the same policy. These two rules do not intersect
due to the fifth tuple (destination port). A packet cannot
match both rules indicating the relative order can change;
therefore, an edge will not exist between them. Although
policy optimization is not the focus of this paper, the pol-
icy DAG and related optimization techniques can be used
to reorder rules to reduce the search time [8], [9].

III. Parallel Firewalls

As described in the introduction, parallelization offers a
scalable technique for improving the performance of net-
work firewalls. Using this approach an array of firewalls
processes packets in parallel, as seen in figure 2. Again,
the individual firewalls will be referred to as firewall-nodes.

2



Source Destination
No. Proto. IP Port IP Port Action

1 UDP 1.1.* * * 80 deny
2 TCP 1.* * 1.* 90 accept
3 TCP 2.* * 2.* 20 accept
4 UDP 1.* * * * accept
5 * * * * * deny

(a) Example security policy consisting of multiple ordered rules.

r1 r2 r3 r4 r5

(b) Policy DAG representation, where vertices are
rules while edges indicate precedence requirements.

Figure 1. Example firewall policy (ACL) and policy DAG.

However, the two designs depicted in this figure are differ-
ent based on what is distributed: packets or rules. The
design developed by Benecke et al [3] consisted of multiple
identical firewalls-nodes connected in parallel, as shown in
figure 2(a). Each firewall-node implements the complete
security policy R, and arriving packets are distributed
across the firewall-nodes for processing (one packet is sent
to one firewall-node) [3]; therefore different packets are pro-
cessed in parallel. Using terminology developed for parallel
computing, this design is considered data-parallel since the
data (packets) is distributed across the firewall-nodes [4].
How the load-balancing algorithm distributes the packets
is important to the data-parallel system and typically im-
plemented as a specialized high-speed switch [12], [13].

Although data-parallel firewalls have been shown to
achieve higher throughput than traditional firewalls [3],
they suffer from two major disadvantages. First, state-
ful inspection requires all traffic from a certain connection
or exchange to traverse the same firewall-node, which is
difficult to perform at high speeds using the data-parallel
approach [3], [15]. Second, distributing packets is only
beneficial under high traffic loads, which is explained in
the next section.

A. Function-Parallel Architecture

The new proposed firewall design consists of multiple
firewall-nodes connected in parallel and a gate machine,
as seen in figure 2(b). However unlike the data-parallel
design that distributes arriving packets, the new design
assigns the policy rules across the firewall-nodes. The dis-
tribution is done such that policy integrity is maintained.
Therefore, a single traditional firewall and the new firewall
design will always give the same result for any packet. The
rules assigned to a firewall-node will be referred to as the
local rule set or local policy. Using parallel computing ter-
minology, this design will be referred to as function-parallel
since the rules are distributed across the firewall-nodes [4].

The general operation of the system can be described
as follows. When a packet arrives to the function-parallel
system it is forwarded to every firewall-node and the gate.
Each firewall-node processes the packet using its local rule
list, including any state information. The firewall-node
then signals the gate indicating either no match was found,

or provides the rule number and action if a match was
found. Therefore, no-match is a valid response and is re-
quired for the function-parallel design. The gate keeps
track of the results and determines the final action to per-
form on the packet. Note, the rule number may correspond
to a state match if the packet belongs to an established con-
nection. This number would have a uniformly lower value
since state rules are evaluated before policy rules [22]. A
first match policy can be implemented by applying the ac-
tion of the lowest numbered matching rule to the packet.
Performance can be increased if the gate can signal the
firewall-nodes that further processing of a certain packet is
no longer needed (a short-circuit evaluation). This occurs
when the appropriate match has been found by a firewall-
node before the other firewall-nodes have completed pro-
cessing the same packet. Short-circuit evaluation requires
the gate to know how the rules are distributed as well as
the dependencies. Redundancy can be provided by dupli-
cating rules across the firewall-nodes (copying local rule-set
to a neighbor). As done in [3], the firewall-nodes are in-
terconnected to determine if the redundant rules should
be processed [7]. Unfortunately, details have been omitted
due to space constraints.

The function-parallel design has several significant ad-
vantages over traditional and data-parallel firewalls. First,
the function-parallel design results in the faster process-
ing since every firewall-node is utilized to process a single
packet. Reducing the processing time, instead of the ar-
rival rate (the data-parallel paradigm), yields better per-
formance that will be demonstrated experimentally. Sec-
ond, unlike the data-parallel design, function-parallel can
maintain state information about existing connections.
Maintaining state can be viewed as the addition of a new
rule corresponding to a requested connection [22]. Unlike
the data-parallel design, the new rule can be placed in
any firewall-node since a packet will be processed by ev-
ery firewall-node (integrity guidelines are given in the next
section). The disadvantage of the system is a possible lim-
itation on scalability, since the system cannot have more
firewall-nodes than rules. However, given the size of most
firewall policies range in the thousands of rules [20], the
scalability limit is not an important concern.

3



packet
distributor•

r1

r2

r3

r4

r5

r6

r1

r2

r3

r4

r5

r6

r1

r2

r3

r4

r5

r6

(a) Data-parallel, packets distributed
across an array of equal firewall-nodes.

packet
duplicator•

r1

r4

r2

r5

r3

r6

gate
control

(b) Function-parallel, rules distributed across
an array of firewall-nodes.

Figure 2. Parallel designs for network firewalls. In the diagrams, the security policy consists of six rules, R = {r1, ..., r6} and each design
consists of three firewall-nodes (depicted as solid rectangles).

B. Rule Distribution and Integrity

As previously described, the function-parallel design dis-
tributes the security policy rules across an array of firewall-
nodes. Using this design, all the firewall-nodes process an
arriving packet in parallel using its local rule-set. The rules
must be distributed such that the integrity of the policy
is maintained. Again, this paper will assume a first-match
policy is desired. Therefore, the distribution of the rules
must not introduce any anomalies into the original rule
list, such as shadowing.

Let m be the number of firewall-nodes in the system
and j be a firewall-node j = 1...m. Each firewall-node has
a local rule-set that is a portion of the security policy.
Denote the local rule list for firewall-node j as Rj that has
nj rules. The firewall-node will process an arriving packet
using the local rule list in a top-down fashion to find the
first match. Note, the actual software implementation of
the firewall-node does not need to be a list, the function-
parallel design is independent of software implementation.
The gate will then apply the action of the lowest numbered
rule matched by the firewall-nodes. Integrity is maintained
if the rule distribution across the firewall-nodes adheres to
the two conditions specified in the following theorem.

Theorem 1: Policy integrity is maintained by the
function-parallel firewall if the rule distribution meets the
following two conditions.

1. Every rule is assigned to at least one firewall-node.
2. A policy DAG edge never traverses upward within a

firewall-node.
Proof: Let R′ be the ordered subset of the rules in

policy R that match packet d. Given a first match pol-
icy, the first rule in R′ is the correct result. Furthermore,
since every rule in R′ matches d, the policy DAG for R′

is completely dependent [8] (an edge exists between every
rule) and only one order of these rules is possible. The
first condition of the theorem ensures that these rules will
exist in the system. The second condition ensures shad-
owing will never occur if multiple rules in R′ exist in the
same firewall-node. Each firewall-node can produce only

one matching rule for d. If more than one rule in a local
policy matches d then the local first match is produced. As
a result, the gate may be given multiple matches from the
set R′ (local first match from multiple firewall-nodes) for d;
however, the gate will determine the appropriate rule since
it always applies the lowest numbered rule of the local first
matches. Since policy DAG edges are only incident from
lowered numbered rules to higher numbered rules, this al-
ways results the first rule in R′ which is the correct rule;
thus, policy integrity is maintained.

Consider a two firewall-node system and the five rule
policy given in figure 1(a). Possible rule distributions are
depicted in figure 3. The distribution given in figure 3(a)
will be referred to as vertical, while the distribution given
in figure 3(b) will be referred to as horizontal. In both
cases the five rules are present and all policy DAG edges
are downward; thus integrity is maintained. In contrast,
figure 3(c) is an illegal distribution because rule r4 shadows
r1 (upward policy DAG edge). The gate can also utilize
the policy DAG to determine the first match. For exam-
ple consider the distribution given in figure 3(a). Assume
a packet matches r3 in the second firewall-node and this
result is reported to the gate. Using the policy DAG, the
gate can determine this is the first match since it is impos-
sible for a packet that matches r3 to also match any rules
that preceded it in the original policy (rules r1 or r2).

IV. Experimental Results

A discrete event simulator was used to measure the per-
formance of a traditional single firewall, the data-parallel
firewall, and the function-parallel firewall. Each firewall-
node was simulated to process 6× 107 rules per second,
which is comparable to current technology. For each ex-
periment the parallel designs always consisted of the same
number of firewall-nodes. An additional gate delay, equiv-
alent to processing three firewall rules, was added to the
function parallel design. No additional delay was added
to the data-parallel system for packet distribution; there-
fore, the delays observed for data-parallel are better than

4



r1 r3

r2 r4

r5

(a) Vertical distribution.

r1 r2

r3 r4

r5

(b) Horizontal distribution.

r4 r2

r1 r3

r5

(c) Illegal rule distribution, r1

is shadowed by r4.

Figure 3. Example rule distributions for the rule set given in figure 1(a), using two firewall-nodes.

what should be expected. Packets lengths were uniformly
distributed between 40 and 1500 bytes, while all legal IP
addresses were equally probable. Firewall rules were gen-
erated such that the rule match probability was given by a
Zipf distribution, which is commensurate with actual fire-
wall policies [8], [14]. Rules were distributed in a horizon-
tal fashion for the function-parallel design, as described in
section B. Three sets of experiments were performed to de-
termine the performance effect of increasing arrival rates,
increasing policy size, and increasing number of firewall-
nodes. For each experiment 1000 simulations were per-
formed, then the average and maximum packet delay were
recorded. The average results were also compared against
the theoretical performance described in [7], which indi-
cates the best average performance a function-parallel fire-
wall can achieve is 1/m the data-parallel design, where m
is the number of nodes. This theoretical result does not
include the gate processing delay, so it can be considered
a lower bound on delay.

Figure 4 shows the impact of increasing arrival rates
on performance of the three firewall systems. In this ex-
periment, each system implemented the same 1024 rule
firewall policy [20] and both parallel designs consisted of
four firewall-nodes. The arrival rate ranged from 5× 103

to 1× 106 packets per second (the highest arrival rate re-
sulted in more than 6 Gbps of traffic on average). As seen
in figure 4, the parallel designs performed considerable bet-
ter than the traditional single firewall. As the arrival rate
increased, the parallel designs were able to handle larger
volumes to traffic due to the distributed design. However
as seen in figure 4(a), the function parallel firewall had an
average delay that was consistently 3.5 times lower than
the data parallel design. This is expected because each
firewall-node in the function-parallel design is utilized to
process the arriving packets. However, the gate delay in-
curred by the function-parallel design causes the average
delay to be greater than the theoretical value, which is four
times lower than the data-parallel design. The impact of
the gate delay is more prominent as the arrival rate in-
creases. Similar to the average delay results, the function
parallel design had a maximum delay 72% lower than the
data-parallel design.

The effect of increasing policy size (number of rules) on
the three firewall systems is given in figure 5. In this ex-
periment, the arrival rate was again 1× 105 packets per
second (yielding more than 0.5 Gbps of traffic on average)
and both parallel designs consisted of four firewall-nodes.
Policies ranged from 60 to 3840 rules [20]. When the poli-
cies consisted of relatively few rules, the single and data-
parallel firewalls observed similar delays. However as seen
in figure 5(a), the parallel designs performed considerable
better than the traditional single firewall once the policy
contained more than 1000 rules. The function parallel fire-
wall had an average delay that was 3.8 times lower than
the data parallel design. Therefore, the additional gate
delay did not have a significant impact on the average per-
formance. The maximum delay for the function parallel
design was also lower than the other designs. For exam-
ple, the maximum delay observed by the function-parallel
firewall was 76% lower than the data-parallel firewall.

Figure 6 shows the effect of increasing number of firewall-
nodes for the two parallel firewall designs. The number of
firewall-nodes ranged from 2 to 256 in this experiment.
The number of rules was 1024 and arrival rate was 2×105

packets per second (again, yielding more than 1 Gbps of
traffic). As seen in figure 6(a), the function parallel de-
sign consistently performed better than the data-parallel
firewall design. As machines were added, the function-
parallel system always observed a reduction in the delay.
This delay reduction trend is expected until the number of
machines equals the number of rules. In contrast, the de-
lay for data parallel design quickly stabilizes and the addi-
tion of more firewall-nodes has no impact. This is because
after a certain point any additional firewall-nodes will re-
main idle, thus these additional firewall-nodes are unable
to reduce the delay. As additional nodes are added the per-
formance difference between the function-parallel firewall
and theoretical limit becomes larger. The local policy de-
lay becomes smaller as more nodes are added; however, the
gate delay remains constant, thus more prominent in the
total delay experienced. The function parallel design had
a maximum delay 74% lower than the data-parallel design.
As demonstrated in each experiment, the function-parallel
design provides a better, scalable firewall solution.

5



0 1 2 3 4 5 6 7 8 9 10

x 10
5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

λ arrival rate (packets/second)

av
er

ag
e 

de
la

y 
(s

ec
on

ds
)

Average Packet Delay

Single
Data Parallel
Function Parallel
Theoretical

(a) Average delay.

0 1 2 3 4 5 6 7 8 9 10

x 10
5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

λ arrival rate (packets/second)

m
ax

im
um

 d
el

ay
 (

se
co

nd
s)

Maximum Packet Delay

Single
Data Parallel
Function Parallel

(b) Maximum delay.

Figure 4. Packet delay as the packet arrival rate increases. Parallel designs consist of four firewall-nodes.

0 500 1000 1500 2000 2500 3000 3500
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

number of rules

av
er

ag
e 

de
la

y 
(s

ec
on

ds
)

Average Packet Delay

Single
Data Parallel
Function Parallel
Theoretical

(a) Average delay.

0 500 1000 1500 2000 2500 3000 3500
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

number of rules

m
ax

im
um

 d
el

ay
 (

se
co

nd
s)

Maximum Packet Delay

Single
Data Parallel
Function Parallel

(b) Maximum delay.

Figure 5. Packet delay as the number of rules increases. Parallel designs consist of four firewall-nodes.

V. Conclusions

It is important that the firewall acts transparently to
legitimate users, with little or no effect on the perceived
network performance. This is especially true if traffic re-
quires specific network Quality of Service (QoS), such as
bounds on the packet delay, jitter, and throughput. The
firewall should process the legitimate traffic quickly and
efficiently. Unfortunately, the firewall can quickly become
a bottleneck given increasing traffic loads and network
speeds. Packets must be inspected and compared against
complex rule sets and tables, which is a time consuming
process. In addition, audit files must be updated with cur-
rent connection information. As a result, the firewall and,
more importantly, the network it protects can be quickly
overwhelmed and is susceptible to Denial of Service (DoS)
attacks. For these reasons, it is important to develop new

firewall architectures that can support increasing network
speeds and traffic loads, as well as minimize the impact of
DoS attacks.

This paper introduced a new scalable firewall architec-
ture designed for increasing network speeds and traffic
loads. The proposed parallel design consists of multiple
firewall-nodes. Each firewall-node implements a portion of
the security policy. When a packet arrives to the system it
is processed by every firewall node simultaneously, which
significantly reduces the processing time per packet. In ad-
dition, rule distribution across the firewall nodes must be
done to maintain policy integrity, which ensures the paral-
lel design and a traditional single firewall always reach the
same decision for any packet. Rule distribution guidelines
that maintain integrity were described in this paper. The
experimental performance showed that the proposed archi-

6



0 50 100 150 200 250
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

number of nodes

av
er

ag
e 

de
la

y 
(s

ec
on

ds
)

Average Packet Delay

Data Parallel
Function Parallel
Theoretical

(a) Average delay.

0 50 100 150 200 250
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

number of nodes

m
ax

im
um

 d
el

ay
 (

se
co

nd
s)

Maximum Packet Delay

Data Parallel
Function Parallel

(b) Maximum delay.

Figure 6. Packet delay as the number of firewall-nodes increases.

tecture can achieve a processing delay 74% lower than pre-
vious parallel-firewall designs. Furthermore unlike other
designs, the proposed architecture can provide stateful in-
spections since a packet is processed by every firewall node.
Therefore, the function-parallel firewall architecture is a
scalable solution that offers better performance and more
capabilities than other designs.

While the function-parallel firewall architecture is very
promising, several open questions exists. For example
given the need for QoS in future networks, it may be pos-
sible to distribute rules such that traffic flows are isolated.
In this case a certain type of traffic would be processed
by a certain firewall-node. Another open question is the
optimization of local firewall-node policies, including re-
dundant policies, using the methods described in [8], [9].
However, optimization can only be done if policy integrity
is maintained.

References

[1] E. Al-Shaer and H. Hamed. Modeling and Management of Fire-
wall Policies. IEEE Transactions on Network and Service Man-
agement, 1(1), 2004.

[2] S. M. Bellovin and W. Cheswick. Network Firewalls. IEEE
Communications Magazine, pages 50–57, Sept. 1994.

[3] C. Benecke. A Parallel Packet Screen for High Speed Networks.
In Proceedings of the 15th Annual Computer Security Applica-
tions Conference, 1999.

[4] D. E. Culler and J. P. Singh. Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufman, 1999.

[5] U. Ellermann and C. Benecke. Firewalls for ATM Networks. In
Proceedings of INFOSEC’COM, 1998.

[6] D. Eppstein and S. Muthukrishnan. Internet Packet Filter Man-
agement and Rectangle Geometry. In Proceedings of the Sym-
posium on Discrete Algorithms, pages 827–835, 2001.

[7] E. W. Fulp. Firewall Architectures for High Speed Networks.
Technical Report 20026, Wake Forest University Computer Sci-
ence Department, 2002.

[8] E. W. Fulp. Firewall Policy Models Using Ordered-Sets and
Directed Acyclical Graphs. Technical report, Wake Forest Uni-
versity Computer Science Department, 2004.

[9] E. W. Fulp. Optimization of Network Firewall Policies Using

Directed Acyclical Graphs. In Proceedings of the IEEE Internet
Management Conference (IM’05), 2005.

[10] E. W. Fulp and S. J. Tarsa. Network Firewall Policy Repre-
sentation Using Ordered Sets and Tries. In Proceedings of the
IEEE International Symposium on Computer Communications
(ISCC’05), 2005.

[11] R. Funke, A. Grote, and H.-U. Heiss. Performance Evaluation of
Firewalls in Gigabit-Networks. In Proceedings of the Symposium
on Performance Evaluation of Computer and Telecommunica-
tion Systems, 1999.

[12] X. Gan, T. Schroeder, S. Goddard, and B. Ramamurthy. LS-
MAC vs. SLNAT: Scalable Cluster-based Web Servers. Journal
of Networks, Software Tools, and Applications, 3(3):175–185,
2000.

[13] S. Goddard, R. Kieckhafer, and Y. Zhang. An Unavailability
Analysis of Firewall Sandwich Configurations. In Proceedings
of the 6th IEEE Symposium on High Assurance Systems Engi-
neering, 2001.

[14] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On
the Self-Similar Nature of Ethernet Traffic. IEEE Transactions
on Networking, 2:1 – 15, 1994.

[15] O. Paul and M. Laurent. A Full Bandwidth ATM Firewall.
In Proceedings of the 6th European Symposium on Research in
Computer Security ESORICS’2000, 2000.

[16] L. Qui, G. Varghese, and S. Suri. Fast Firewall Implementations
for Software and Hardware-Based Routers. In Proceedings of
ACM SIGMETRICS, June 2001.

[17] V. P. Ranganath and D. Andresen. A Set-Based Approach to
Packet Classification. In Proceedings of the IASTED Interna-
tional Conference on Parallel and Distributed Computing and
Systems, pages 889–894, 2003.

[18] S. Suri and G. Varghese. Packet Filtering in High Speed Net-
works. In Proceedings of the Symposium on Discrete Algorithms,
pages 969 – 970, 1999.

[19] P. Warkhede, S. Suri, and G. Varghese. Fast Packet Classifica-
tion for Two-Dimensional Conflict-Free Filters. In Proceedings
of IEEE INFOCOM, pages 1434–1443, 2001.

[20] A. Wool. A Quantitative Study of Firewall Configuration Errors.
IEEE Computer, 37(6):62 –67, June 2004.

[21] J. Xu and M. Singhal. Design and Evaluation of a High-
Performance ATM Firewall Switch and Its Applications. IEEE
Journal on Selected Areas in Communications, 17(6):1190–
1200, June 1999.

[22] R. L. Ziegler. Linux Firewalls. New Riders, second edition,
2002.

[23] E. D. Zwicky, S. Cooper, and D. B. Chapman. Building Internet
Firewalls. O’Reilly, 2000.

7


