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Overview 

•  The Need for Forensics 
•  Forensics Problems and Our Contribution 
•  Background 
•  Problem Model 
•  Challenges and Solutions 
•  Empirical Evaluation 
•  Conclusion 
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The Need for Forensics 
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Why? 

•  Malware is a serious threat 
–  Internet of [Insecure] Things 
– Stuxnet, Regin 
– Christmas holiday tradition 
– Compromise is an eventuality 

•  Forensics seeks to understand the how 
– Embrace the ownage 
– Collect evidence, Analyze, Extrapolate 

•  Enables us to build better defenses 
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Scenario: Vulnerable Web Server 
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Scenario: Exploit, What Now? 
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Scenario: What Now? 

•  Upon first non-self system call 
– Attack code fragments remain in 

memory 
•  Packing, self-modification, 

armoring 
– Staged C2 

•  Can the fragments reveal clues? 

– Robust system needed to 
generically model execution 
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Scenario: Build Better Defense 
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Forensics Problems 
and Our Contribution 
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Problem 

•  Need to automate forensic response upon 
detection in memory 

– Avoid substantial manual effort 
•  Automatically recover malcode 
•  Extract/unpack/recover attack code  

– Memory dump, transient artifacts 
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Problem 

•  Human oversight is costly 
•  Trade-off between 

– Generic binary 
– Malware specific 

•  Need 
– Automated generic 

malware tool that 
approaches detail from 
generic binary tools 
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Motivation, Existing Tools 

•  Only work within known boundaries 
– Typically exclude support for code fragments 

•  e.g., shellcode 

– Things get messy without given boundaries 
•  e.g., arbitrary byte streams 

•  Do not generically handle: 
– Malformed, Misaligned 
– Obfuscated, Armored 
– Too specific or too abstracted 
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Solution: CodeXt 

•  Discovers executable code within memory dump 
– Upon real-time detection 
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Solution: CodeXt 

•  Extracts packed or obfuscated malcode 
– First to generically handle Incremental  

and Shikata-Ga-Nai 
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Solution: CodeXt 

•  Uses data-flow analysis (taint tracking) 
– Finds attack string within network traffic 

•  Models both shellcode and full executables 

•  Framework built upon S2E 
– Selective means QEMU vs. KLEE (LLVM)  
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Background 
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Background 

•  S2E, Selective Symbolic Execution 
– KLEE for symbolic 
– QEMU for concrete 

•  We extended QEMU to detect system calls 

•  KLEE 
– Expressive IR allows low level operations 

•  Down to the bit 

– States = Shadow Memory + Constraints 
– Memory = Expressions 

•  Even concrete values are expressions 
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Attack Code vs. Attack String 

•  Attack string: 
– Crafted input to the process 
– May include non-code 

•  Attack code: 
– Executed within process 
– May include immediate values (data) 

•  Removing layers of obfuscation 
– How many, and by what function? 
– What about self-destructive code? 
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Framing the Problem 

•  Assumptions 
– All malicious code exists within dump 
– Malicious code has not overwritten itself destructively 

•  Requirements 
– No code semantics known 
– Coding conventions irrelevant 
– Capable of accuracy with self-modifying code 
– Capable of modeling network-based server applications 
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CodeXt Output 

•  Instruction Trace of executed instructions 
– Grouping of fragments into chunks 
– Reveals original and unpacked malcode 
– Assisted by a translation trace 

•  Data Trace of memory writes 
–  Intelligent memory update clustering 
– Multi-layer snapshots 

•  Call Trace of system calls 
– With CPU context   

20 



Data-flow Analysis Output 

•  For each labeled byte 
– Follow propagration 
– Generate trace 
– Generate memory map 

•  Add events that qualify as success 
– EIP contains tainted values 
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Problems + Challenges + Solutions 
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Handling Byte Streams 

•  S2E expects well structured binaries 
– We wrap the binary for execution 

•  S2E uses basic block granularity  
– Our modified QEMU translation returns more info 
– We leverage translation and execution hooks to verify 

Wrapper
Info

Buffer

Guest OS

Output
CodeXt S2E Plugin

S2E (Modified QEMU)

Host to Guest

File Transfer
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Code Fragments 

•  Fragmentation 
– Clustering into Chunks, adjacency, execution trace 

•  Density 
– Usage: Executed/Range 
– Overlay: Unique executed/Range over snapshots 

•  Enclosure  
– Continuous executable bytes adjacent to end 

Random bytes

Hidden Code

Hidden Code

Random bytes

Detection 
Point

( )S2E

S2E (     , offset1)

S2E (     , offsetn)

.

...
.. Fragments Match
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Defeating Obfuscation 

•  FPU instructions, fnstenv 
– Added small change to QEMU to comply 

•  Intra-basic block self-modification 
– We know address range of each translated block 
– During execution we track writes 
–  If any write is to same block we retranslate block 

•  Emulator detection 
– Tested for a set of obscure instructions used as canaries 
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Multipath, Arbitrary Bytes 

•  Multipath Execution 
– Existing trace tool manages path merging 
– KLEE manages state forking and resources 

•  Mark Arbitrary Bytes as Symbolic 
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Executing Symbolic Code 

•  Taint labels can be search upon events 
– KLEE prefers constraints over solving 

•  Constraint cleanup 

– Silent concretization 
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Executing Symbolic Code, con’t 
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•  Data-flow validity, intermingled code 
•  Symbolic EIP 
•  Periodic or triggered custom simplifier 

•  Inheritance enforcer 
•  Bit-wise and mov 
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Executable Modeling 
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•  OS introspection 
– Snag CR3 as PID 

•  Load and link overhead 
– 95,000 instructions to ignore 
– Canary 

•  Real-time attacks 
– Buffer overflow 
– Sockets 
– SSL 

 
 



Empirical Evaluation 
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Experiments, Part 1 

•  Hidden code search 
– 1KB to 100KB buffers, 40B to 80B shellcodes 
– Filled with either null, live-capture, or random bytes 
– Varied assistance data: EIP, EAX, both, neither 

•  Accuracy 
– De-obfuscation, Anti-emulation detection 
– Various packers mentioned in previous research 
–  In-shop: Junk code insertion, Ranged xor, Incremental   

•  Symbolic Branching 
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Multi-Layered Encoders 
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Publicly Available and Advanced 
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Technique Extracted? Technical Challenge
Junk code insertion Yes None

Ranged XOR Yes None
Multi-layer combinations of above Yes Multi-layer encoding

Incremental Yes
Live annotation required
Block based feedback key

ADMmutate Yes Complicated code combinations
Clet Yes Polymorphism

Alpha2 Yes None
MSF call+4 dword XOR Yes Instruction misalignment

MSF Single-byte XOR Countdown Yes Changing key
MSF Variable-length
fnstenv/mov XOR

Yes FPU handling

MSF jmp/call XOR
Additive Feedback Encoder

Yes
Additive feedback key
Canary to end loop

MSF BloXor Yes Metamorphic block based XOR

MSF Shikata-Ga-Nai Yes
Same block polymorphic
Additive feedback key

Table 4.2: Encoding Techniques Tested.

to be little impact of eip and eax on the sum of false positives eliminated and we anticipate that this

is either caused by the choice in malicious code or demonstrates the robustness of the methodology.

4.5.2 Locating the Hidden Code from Memory Dump

To evaluate CodeXt’s capability in pinpointing the start and boundary of hidden code in a memory

dump, we put our sample shellcode into a bu↵er and and fill the surrounding bytes with three type

of data 1) all nulls (0x00); 2) random bytes; 3) surrounding bytes from captured memory dump of

a real world code injection attack.

Because it is easier to locate long attack code, we deliberately used short attack code in our

experiment: 41-byte helloworld.rawshell and 81-byte ghttpd shell. For these shellcode, we used a

bu↵er of size 1024 bytes. We made the o↵set variable symbolic and set its range to be [0, 1023],

which directed CodeXt to explore 1024 potential paths starting from each di↵erent o↵set.

When evaluating CodeXt’s capability in locating the hidden code within memory dumps, we

want to see how much di↵erence the bytes that surround the hidden code and the attack code

context information (i.e. run-time hint) would make. Specifically, we have tested CodeXt with the
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Shikata-Ga-Nai, Techniques 
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0024 033C24 add edi, [esp] ; edi+=0x2=0x.101 <-obs_sc[4]
0027 5B pop ebx ; ebx=0x2
0028 FF31 push dword [ecx] ; push 4B of obs_sc[0]
002A 58 pop eax ; eax = obs_sc
002B C1E010 shl eax, 0x10 ; lob off left 2B
002E C1E810 shr eax, 0x10 ; correct 2B location
0031 89C3 mov ebx, eax ; ebx=eax=obs_sc[0..1]
0033 09D3 or ebx, edx ; ebx=sc[0..1]|sc[2..5]
0035 21D0 and eax, edx ; eax=sc[0..1]&sc[2..5]
0037 F7D0 not eax ; eax=!(eax)
0039 21D8 and eax, ebx ; eax=(!(sc[0..1]&sc[2..5]))&(sc[0..1]|sc[2..5]) =

; (!(x&y)&(x|y))
003B 6650 push ax ; ax holds decoded i, i+1
003D 668F01 pop word [ecx] ; <- writes i, i+1
0040 6A02 push 0x2
0042 030C24 add ecx, [esp] ; ecx+=0x2=0x..ff
0045 5B pop ebx ; ebx=0x2
0046 4E dec esi ; dec counter
0047 85F6 test esi, esi ; see if esi is 0
0049 0F85D0FFFFFF jnz dword 0xd6 ; end loop, if esi == 0 then don’t jump

Shikata-Ga-Nai

Shikata-Ga-Nai is a polymorphic XOR additive feedback encoder within the Metasploit Framework.

This encoder o↵ers three features that provide advanced protection when combined. First, the

decoder stub generator uses metamorphic techniques, through code reordering and substitution, to

produce di↵erent output each time it is used, in an e↵ort to avoid signature recognition. Second, it

uses a chained self modifying, or additive feedback key, so if decoding input or keys are incorrect at

any iteration then all subsequent output will be incorrect. Third, the decoder stub is itself partially

obfuscated via self-modifying of the current basic block and using FPU instructions. Without

modification QEMU is not able to support the FPU instructions and self-modifying of current basic

block.

With our extensions to S2E, CodeXt has successfully extracted the “Hello World!” shellcode pro-

tected by Shikata-Ga-Nai. The following is the Shikata-Ga-Nai encoded shellcode with the partially

obfuscated decoding stub:

Offset Bytecode Mnemonic ; Comment
0000 DAD4 fcmovbe st4 ; fpu stores PC
0002 B892BA1E5C mov eax,0x5c1eba92 ; the key
0007 D97424F4 fnstenv [esp-0xc] ; push 0x0s addr
000B 5B pop ebx ; ebx = 0x0s addr
000C 29C9 sub ecx,ecx
000E B10B mov cl,0xb ; words to decode
0010 83C304 add ebx,0x4 ; inc target
0013 314314 xor [ebx+0x14],eax ; update [0x18]
0016 034386 add eax, [ebx-0x7a] ; 0x18 is encoded
0019 58 pop eax ; part of decoder
001A EBB7 jmp 0xd3 ; part of decoder
001C B5C5 mov ch,0xc5

83

001E 258809F174 and eax,0x74f10988
0023 D32A shr dword [edx],cl
0025 CB retf
0026 A4 movsb
0027 51 push ecx
0028 A3E6C926BA mov [0xba26c9e6],eax
002D B304 mov bl,0x4
002F C6 db 0xc6
0030 54 push esp
0031 AB stosd
0032 68385B64F2 push dword 0xf2645b38
0037 AB stosd
0038 CF iretd
0039 1AD0 sbb dl,al
003B 13788A adc edi,[eax-0x76]
003E 5A pop edx
003F 38E2 cmp dl,ah
0041 7591 jnz 0xd4
0043 CD db 0xcd

After the first iteration (now all obfuscation removed from decoder stub):

Offset Bytecode Mnemonic ; Comment
0000 DAD4 fcmovbe st4
0002 B892BA1E5C mov eax,0x5c1eba92
0007 D97424F4 fnstenv [esp-0xc]
000B 5B pop ebx
000C 29C9 sub ecx,ecx
000E B10B mov cl,0xb
0010 83C304 add ebx,0x4 ; inc target
0013 314314 xor [ebx+0x14],eax ; decode target
0016 034314 add eax,[ebx+0x14] ; modify key
0019 E2F5 loop 0x10 ; jmp 0x10, ecx--
001B <deobfuscated 1st byte of shellcode>
001C <obfuscated shellcode>

Fully decoded “Hello world!” shellcode (less the decoder stub shown above):

Offset Bytecode Mnemonic ; Comment
001B EB13 jmp +0x13 ; same as orig input
001D 59 pop ecx
001E 31C0 xor eax,eax
0020 B004 mov al,0x4
0022 31DB xor ebx,ebx
0024 43 inc ebx
0025 31D2 xor edx,edx
0027 B20F mov dl,0xf
0029 CD80 int 0x80
002B B001 mov al,0x1
002D 4B dec ebx
002E CD80 int 0x80
0030 E8E8FFFFFF call -0x18
0035 <string to print>

4.5.4 Emulation Detection Evasion

In order to test the robustness of our system we created a collection of proof of concept anti-emulation

byte code from research that details examples of techniques. Previous publications shows how
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Table 4.3: Anti-emulation Techniques Tested.

Technique Evaded?
FPU instruction fpstenv Yes
Same block modification Yes

Repeated string instruction rep stosb Yes
Obscure instructions sal Yes
Alternate encodings test Yes

Undocumented opcodes salc Yes

emulation based debuggers such as QEMU can already defeat other known anti-debugger methods

such as: timing detection, blacklisted drivers, and address lookup signatures [79–82]. To expand

this we choose methods which, according to the research, were currently usable against Intel x86

emulation by QEMU. As listed in table 4.3 we tested: FPU handling; same basic block instruction

modification; repeated string instruction handling; obscure instruction handling; obscure alternate

encodings; and, carry and register interaction in an undocumented opcode.

For FPU handling we needed to ensure that the fpstenv instruction worked as expected and in

the general case. This instruction writes an environmental struct to a given address. We found that

QEMU did not update this struct properly, in particular the address of the last FPU instruction

was all zeroes, giving not only a substantial signature for detection but also preventing a prominent

getPC method. We extended our system to track the most recent FPU instruction’s address and

update the written struct before the next instruction. From this test, our system e↵ectively handles

the fpstenv instruction successfully in the general sense.

QEMU has a raw byte code processor that consumes a byte at a time until an instruction is

gathered and then converted into an intermediate representation, grouping these instruction transla-

tions into a block. This translation block typically ends at standard basic block ending instructions,

such as a jump, loop, or system call. Once a translation block is complete, QEMU executes its IR.

If, during execution, any instruction modifies a byte that corresponds to any instructions within the

same translation block, then the system should retranslate that and subsequent instructions. We

found that QEMU did not do this by default, and we extended our system to detect same basic

block modifications at which point we trigger a retranslation. From this test, our system e↵ectively

handles intra-basic block self-modifying code.

The remaining tests were from a collection of x86 oddities we have observed, some mentioned in
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Incremental Encoder 
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>> Printing the Data_trace memory map (8 snapshots)
>> Printing snapshot 0

0 1 2 3 4 5 6 7 8 9 a b c d e f
0xbfd7cf50 7200873d ca3c872f
0xbfd7cf60 ab57d0be a98db797 f96e5730 7b6e4a6d
0xbfd7cf70 6ba626bc baa6f76d baa6266d ba77266d
0xbfd7cf80 6b772614 76184902

>> Printing snapshot 1
0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 89e731c0 31db31d2
0xbfd7cf60 50b06643 526a016a 0289e1cd 8089fc90
0xbfd7cf70 90419041 41414190 41419090 41909090
0xbfd7cf80 909090e9 8dffffff

>> Printing snapshot 2
0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 0d28d966 37cc80c2
0xbfd7cf60 84cfe9db ece8f8db 3acde8db d2460ad7
0xbfd7cf70 949db80d e2460970 04976141 148ea9fc
0xbfd7cf80 145f7854 09301742

>> Printing snapshot 3
0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 89e731db b303687f
0xbfd7cf60 00000166 68271066 be020066 5689e26a
0xbfd7cf70 105250b0 6689e1cd 805889fc 90414141
0xbfd7cf80 909090e9 8dffffff

>> Printing snapshot 4
0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 3c7e935a 3c77aaa6
0xbfd7cf60 bcb7d719 bd88ab98 c0378ad8 4cf65b09
0xbfd7cf70 9d275bd8 4cf68ad8 4c275bd8 4c278ad8
0xbfd7cf80 9d278a70 8048e566

>> Printing snapshot 5
0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 31c989c3 31c0b03f
0xbfd7cf60 b100cd80 b03fb101 cd809041 41414190
0xbfd7cf70 90904141 41419041 41904141 41909041
0xbfd7cf80 909090e9 8dffffff

>> Printing snapshot 6
0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 0f49f534 11afd734
0xbfd7cf60 56afc635 50b164ec 3509470d b762f7d5
0xbfd7cf70 df4d24cc 7fc1e51d ae10e51d 7fc1e5cc
0xbfd7cf80 ae1034b5 b37f5ba3

>> Printing snapshot 7
0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 31c95168 2f2f7368
0xbfd7cf60 682f6269 6e31c0b0 0b89e351 89e25389
0xbfd7cf70 e1cd8090 41414141 90904141 41414190
0xbfd7cf80 909090e9 8dffffff

Snapshot 0, 2, 4, and 6 contains the encoded segment 1, 2, 3, and 4 respectively. Snapshot 1, 3,

5, and 7 contains the decoded segment 1, 2, 3, and 4 respective. The red colored part (last 5 bytes)

in snapshot 1, 3, 5, and 7 contains the jump instruction to the incremental decoder. The blue colored

part in snapshot 1, 3, 5, and 7 corresponds to the original code in the original segment 1, 2, 3, and 4

respectively. The light colored part in snapshot 1, 3, 5, and 7 contains nop instructions. Therefore,

CodeXt has successfully extracted the complete code protected by the incremental encoding.

ADMmutate

We have encoded the sample shellcode through ADMmutate (the first well known public poly-

morphism engine) and can accurately model it. ADMmutate focuses on bu↵er overflow payload

obfuscation via NOP instruction substitution and junk code insertion. To meet the input require-

ments of ADMmutate we made a slight modification to the sample shellcode and prefixed it with

a 200 byte NOP sled (of 0x41). It then replaced all the NOPs with its metamorphic encoding and

disperses a decoder within them.
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Symbolic Conditionals 

Logical
Start

func1() in 
Hidden Code 

Frag #1

Hidden Code 
Frag #2

func3() in 
Hidden Code 

Frag #3

...
y=0; z=1;
if (x>==10)
  y=func3();
else if (x>=0)
  y=func1();
if (y==0)
  z=0;
if (y==1 && z==0) 
  z=4;
... 
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Experiments, Part 2 

•  Extrapolating malicious behavior 
– Detecting self-modifying code  

•  Test data-flow analysis robustness 
– Key identification 
– Network servers 

•  Including SSL sockets 

– No source-code modifications 
•  Full executable 
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Detecting Write-then-Execute 
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Call +4 Dword, Key Identification 
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0x086de1b0 2c20776f 726c6421 0a0d , world!..

>> Printing the memory map "data_Inp0000" (1 snapshot)
0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x086de190 13 .

When the key is four bytes and each byte is labeled separately, we can see labels tainting

only once per every four bytes of the payload. In the case of Call4Dword we have included four

memory maps, this di↵ers from the previous 1B XOR, since now we track 4 labels code Key0000,

code Key0001, code Key0002, and code Key0003.

>> Printing the memory map "code_Key0000" (1 snapshot)
0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x09e13170 e5 .
0x09e13180 -------- -------- eb------ c0------ ................
0x09e13190 db------ b2------ b0------ 80------ ................
0x09e131a0 ff------ 6c------ 20------ 6c------ ....l... ...l...

>> Printing the memory map "code_Key0001" (1 snapshot)
0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x09e13180 c2------ -------- --13---- --b0---- ................
0x09e13190 --43---- --0f---- --01---- --e8---- .C..............
0x09e131a0 --ff---- --6c---- --77---- --64 .....l...w...d

>> Printing the memory map "code_Key0002" (1 snapshot)
0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x09e13180 5e---- -------- ----59-- ----04-- ^........Y.....
0x09e13190 ----31-- ----cd-- ----4b-- ----e8-- ..1.......K.....
0x09e131a0 ----48-- ----6f-- ----6f-- ----21 ..H...o...o...!

>> Printing the memory map "code_Key0003" (1 snapshot)
0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x09e13180 9b-- -------- ------31 ------31 .........1...1
0x09e13190 ------d2 ------80 ------cd ------ff ................
0x09e131a0 ------65 ------2c ------72 ------0a ...e...,...r....

For the case of Metasploit’s Shikata-Ga-Nai the decoding loop adds the encoded 32b value to

the key at the end of each decode loop in order to modify the key used at the next iteration. Since

there are four bytes, just as with Call4Dword, we have four labels: code Key0000, code Key0001,

code Key0002, and code Key0003; let us abbreviate them {k0, k1, k2, k3}.

Since xor is a bitwise operation, then each byte in the first decoded 4 byte value has only 1

taint label. The 0th byte has {k0}, the 1st has {k1}, etc. However, due to the key modification,

via a non-bitwise instruction, add, the resulting value contains all four labels at each byte (e.g., 0th

has {k0, k1, k2, k3}, 1st has {k0, k1, k2, k3}, etc.). This means that every byte decoded in subsequent

iterations is tainted by {k0, k1, k2, k3} as well. The full output can be seen in appendix D.1, and the

key label, taint tracking snapshots are included here:
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Table 5.1: Outcome following monitored execution of standard network vs. SSL socket
servers when exploited with di↵erent shellcode types.

Server Shellcode Control-flow (CodeXt) Data-flow (Taint)
Standard Unpacked Success Success

Ranged XOR Success Success
Shikata-Ga-Nai Success Success

SSL Unpacked Success S2E Failure
Ranged XOR Success S2E Failure
Shikata-Ga-Nai Success S2E Failure

ranged XOR, and Shikata-Ga-Nai attack strings.

It is important to note that performance was significantly slower, but no network connections

timed out. The results of tracing the execution and data writes is summed in Figures 5.3 and 5.4.

Their color is less important than their relative proportions. In Figure 5.4, you can clearly see

that a single segment in the inner radius of the donut chart occupies a significant majority, and it

demonstrates very little fragmentation as we traverse into outer radii. In this particular view, it

informs the analyst that a single translated instruction from a single translation block did the most

data output. This is useful in finding decoding loops.

5.3.5 Identifying Attack String within Network Tra�c

We extended our process monitoring to cover the server applications from the previous section. We

executed it within S2E and exploited it with Shikata-Ga-Nai, successfully tracing all translations,

executions, and data-writes of the executable and shellcode. We can track all bytes received from a

client over the network and mark them as symbolic.

After accepting a connection, the network input is read into a bu↵er that is handled by the

logMsg function. A long enough network input will overflow the bu↵er, overwriting the return

address on the stack and redirecting control flow to the input bu↵er when logMsg returns.

We added a user option to our plugin to label all network input for taint analysis. For this, we

monitor the virtual machine for an accept system call by the process we are tracing.

We extended our system call detection mechanism to allow detection from segments of code

outside of any monitor range. The plugin monitors all onPrivilegeChanges events when levels go

115

•  Network server 
– Standard socket and SSL versions 

– With Data-flow enabled, S2E forked excessive states 
•  SSL_accept function 
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Figure 4.12: Interactive D3 based visualization output from single byte XOR decoding.

0036 <obfuscated shellcode>

XOR Encoded

The second obfuscation technique is a XOR based decoder. These can use self-manipulative keys of

di↵erent lengths, but for simplicity we use a 1 byte key of constant value and do not consider banned

values, such as 0x00. A common means to reduce these is to use subtract with negative numbers

for adding; using a 4B key; and xor’ing a register so that only the lower word need be modified

which uses opcodes that avoids zeroes. However, we save the more advanced methodology for the

Metasploit framework encoders. The encoding algorithm appends each byte of an input bu↵er to

a decoding stub after it has been xor’ed with the key. The decoding stub uses the same key to

xor each byte and then executes the decoded form. Our version allows the user to specify an o↵set

and byte length for fractional encoding to allow overlaps if multiple layers of encoding are deployed.

Here is the decoding stub:

Offset Bytecode Mnemonic ; Comment
0000 EB20 jmp short 0x22 ; getPC setup
0002 5E pop esi ; esi = 0x27’s addr
0003 89F2 mov edx,esi ; store for later
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Conclusion 
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Conclusion 
•  Although emulation is heavyweight, it is: 

– Accurate and enables anti-anti-sandbox techniques 
– OS independent 

•  Symbolic analysis engine opens avenues 
– Taint propagation and analysis 
– Fuller branch exploration and pruning heuristics 

•  Our Framework 
– CodeXt accurately pinpoints and models even highly 

obfuscated code in adverse conditions 
– Executable extensions enable black-box analysis 
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•  Gaps exist in current malware forensics 
•  Obfuscated shellcode 
•  Solutions for advanced samples are not generic 

•  Code fragments vs. portable binaries 
•  No framework to handle deep analysis in both 

•  Disconnect between real-time detection and low 
level analysis 
•  Tool pipeline is not seamless 

•  No system in place for aggregated analytics 
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Summary 



Future Development 

•  Coordination with Open Source projects 
– Already on Github 

•  Needs cleaner repository 

– Merge contributions into QEMU/S2E 
– Create new KLEE Expr type for taint labels 
– Cuckoo sandbox 

•  Better analytics 
–  Integrate knowledge for anomaly detection 
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Thank you for your time 

•  Any questions? 
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Spare Slides 
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Recognizing Code 

•  Avoiding the Halting Problem 
– No infinite loops 
– Caps on executed instructions  

•  Different types: target, non-target, system 

•  False cognates  
–  Illegal first instructions 
– False jumps into suffix 

•  Many substrings 
– Matched code fragment: ends on system call,  

EAX within range 

Hidden Code

Random bytes

Random bytes

Hidden Code

Hidden Code

Random bytes

Detection 
Point
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Density Heuristic 
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Concrete Execution Challenges 

•  Handling Byte Streams 
– Wrapper 
– QEMU translator returns more instruction information 

•  Dealing with Code Fragments 
– Chunk creation 
– Density and Enclosure 

•  Defeating Obfuscation 
– FPU handler 
–  Intra-basic block monitoring 
– Obscure instructions 
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Symbolic Execution Challenges 

•  Multipath Execution 
•  Mark Arbitrary Bytes as Symbolic 

– Detect system call semantics 

•  Pruning Label Propagation 
– Periodic garbage cleanup 

•  Executing Symbolic Code 
–  Intercept onSilentConcretize 
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S2E 

•  Selective symbolic execution engine 
– KLEE for symbolic 
– QEMU for concrete 
– Decision made on the basic block level 

•  Sub-basic block interaction allowed 
•  Emits pre- and post-instruction signals 

– Extended QEMU to detect system calls 

 

54 



S2E Plugins 

•  Hooks establish events 
– S2E direct or pass through to KLEE 

•  Compiled into S2E 
– A fork of QEMU 

•  Major hooks we use: 
– onExecuteInstruction 
– onDataMemoryAccess 
– onPrivilegeChange 
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(Add w8 (w8 146) (Read w8 0 v8_prop_code_Key0000_8))))))

The Extract expression class is a common o↵ender. The second argument, w8, specifies how

many bits to extract at an o↵set of the third argument, 0, from the LSB. This expression, is most

commonly seen at a width of 8b to extract a single byte; however, KLEE unnecessarily includes the

entire 32b formula. This means that the above expression can be represented much more readable:

(Add w8 (w8 146) (Read w8 0 v8_prop_code_Key0000_8))

To combat this, any time our system processes an expression it runs a simplifier on it. For

instance, upon each silent concretize event, we simplify the expression that is concretized, and

restore its simplified version. Simplifying is also called anytime there is an onDataMemoryAccess

event (i.e., any data write) or anytime the system writes to a register (e.g., enforcing a taint).

In more complex expressions, a 32b operation is embedded. When these operations are bitwise,

then simplification can still occur. For instance:

(Extract w8 0 (Xor w32 (w32 3085654150)
(Concat w32 (Add w8 (w8 92) (Read w8 0 v5_prop_code_Key0003_5))

(Concat w24 (Add w8 (w8 30) (Read w8 0 v6_prop_code_Key0002_6))
(Concat w16 (Add w8 (w8 186) (Read w8 0 v7_prop_code_Key0001_7))

(Add w8 (w8 146) (Read w8 0 v8_prop_code_Key0000_8))))))

Which translates to extract 8b at o↵set 0 of 308565150ˆ146. Simplifying this requires solving the

LSB of the Xor expression. Using KLEE notation, we can assign N0 as the expression of the least

significant byte. This allows us to simplify the above expression to:

(Add w8 (w8 (N0) (Read w8 0 v8_prop_code_Key0000_8))

Note that non-bitwise operators, such as the ADD instruction used in decoding stub key feedback

modification loops, can not be simplified easily. During the second and subsequent decodings all

writes have all labels from the original key taint for every byte.

This posed a significant challenge, to which we designed a KLEE expression traversal algorithm

to, in a generic manner, simplify multiple labeled expressions. It recursively traverses non-bitwise

expressions to extract all taint labels, concretizes the result and then reassigns the labels to the

simplified version.

For each child expression of an expression, a handleOperator function is called (recursively). If

a labeled leaf expression. e.g., a group of taint labels is found, then they are appended to a list. If the

operator is an extract and the child’s operator is bitwise (xor, or, and, not), then only the required
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writes have all labels from the original key taint for every byte.

This posed a significant challenge, to which we designed a KLEE expression traversal algorithm

to, in a generic manner, simplify multiple labeled expressions. It recursively traverses non-bitwise

expressions to extract all taint labels, concretizes the result and then reassigns the labels to the

simplified version.

For each child expression of an expression, a handleOperator function is called (recursively). If

a labeled leaf expression. e.g., a group of taint labels is found, then they are appended to a list. If the

operator is an extract and the child’s operator is bitwise (xor, or, and, not), then only the required
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Extract 8b at offset 0 of 308565150ˆ146 
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